Evaluating a logarithmic integral using complex analysis

Click For Summary

Discussion Overview

The discussion revolves around evaluating the integral $$\int_{0}^{\infty} \frac{\log^2(x)}{x^2 + 1} dx$$ using complex analysis techniques, particularly contour integration. Participants explore various aspects of the integral, including branch cuts of the logarithm, residue calculations, and convergence of integrals.

Discussion Character

  • Technical explanation
  • Exploratory
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • One participant questions the branch of the logarithm being used, noting a discrepancy between the proposed argument range and the contour integration limits.
  • Another participant suggests that the negative result of the integral indicates a potential error in the calculations, referencing an alternative method that yields a positive result.
  • There is a discussion about the evaluation of different contour segments, with participants calculating residues and limits for various paths around poles.
  • One participant proposes that the integral over the negative x-axis should relate to the integral over the positive x-axis, questioning the equality of the integrands in both cases.
  • Another participant seeks to prove that the integral $$\int_{0}^{\infty} \frac{\log(x)}{x^2 + 1} dx$$ equals zero, suggesting a substitution method but expressing uncertainty about its rigor.
  • There is mention of using the unit circle for contour integration in integrals from $0$ to $1$, with participants exploring the implications of such a method.

Areas of Agreement / Disagreement

Participants express differing views on the evaluation of the integral, with some questioning the validity of the negative result and others supporting the calculations presented. The discussion remains unresolved, with multiple competing interpretations and methods being explored.

Contextual Notes

Participants note various assumptions regarding the branch cuts of the logarithm and the behavior of integrals at infinity. There are unresolved questions about the convergence of certain integrals and the correctness of the proposed methods.

Amad27
Messages
409
Reaction score
1
Hello,

I am evaluating:

$$\int_{0}^{\infty} \frac{\log^2(x)}{x^2 + 1} dx$$

Using the following contour:

View attachment 3742

$R$ is the big radius, $\epsilon$ is small radius (of small circle)

Question before: Which $\log$ branch is this? I asked else they said,

$$-\pi/2 \le arg(z) \le 3\pi/2$$

But in the contour it is: $0 \le \theta \le \pi$ isn't it?

The pole is:

$z = \pm i$, but the one in the contour is $z = i$

$$\text{Res}_{z = i} = \lim_{z = i} \frac{\log^2(z)}{z+i} = \frac{\log^2(i)}{2i}$$

$$\log(z) = \log|z| + iarg(z) \implies \log(i) = \pi(i)/2 \implies \log^2(i) = -\frac{\pi^2}{4}$$

$$\text{Res}_{z = i} = \lim_{z = i} \frac{\log^2(z)}{z+i} = \frac{-\pi^2}{8i}$$

$$\oint_{C} f(z)dz = (2\pi i) \cdot \frac{\pi^2}{8i} = \frac{-\pi^3}{4}$$

Evaluation of $\Gamma_1$:

$$\oint_{\Gamma_1} f(z) dz = \int_{\epsilon}^{R} \frac{\log^2(x)}{x^2 + 1} dx$$

We will take $\epsilon \to 0$ and $R \to \infty$ later down the road.

Evaluation of $\Gamma_2$:

Using $z = Re^{i\theta}$ The denominator $z$'s are there for a reason.

$$\oint_{\Gamma_2} f(z) dz = \int_{0}^{\pi} \frac{\left( \log(R) + i\theta \right )^2 iRe^{i\theta} d\theta}{z)^2 + 1} $$

$$\left | \int_{0}^{\pi} \frac{\left( \log(R) + i\theta \right )^2 iRe^{i\theta} d\theta}{(Re^{i\theta})^2 + 1} \right | \le \int_{0}^{\pi} \frac{(R)\cdot \left | \log(R) + i\theta \right |^2}{\left | (z)^2 + 1 \right |} d\theta$$

$$|\log(R) + i\theta|^2 = \log^2(R) - \theta^2 \le \log^2(R)$$

$$|z^2 + 1| \ge |z|^2 - 1 \implies |z^2 + 1| \ge R^2 - 1$$

Then:

$$\frac{1}{|z^2 + 1|} \le \frac{1}{R^2 - 1}$$

The M-L inequality states:

$$\left | \int \right | \le ML(\Gamma)$$

Estimation lemma - Wikipedia, the free encyclopedia

So $M = \max(|f(z)|)$

$$|f(z)| \le \frac{\log^2(R)}{R^2 - 1}$$

$$L(\Gamma_2) = (1/2)(2\pi R) =\pi R $$

$$\left | \int \right | \le ML(\Gamma)$$

Therefore:

$$\left | \int \right | \le \frac{\log^2(R)\cdot\pi R}{R^2 - 1}$$

$$\lim_{R \to \infty} \left | \int f(z) dz \right | \le \lim_{R \to \infty} \int |f(z) dz| \le \lim_{R \to \infty} \frac{\log^2(R)\cdot\pi R}{R^2 - 1} = 0$$

So $\displaystyle \oint_{\Gamma_2} f(z) dz = 0$

Question: But how do I find the ACTUAL max $M$?? Was that the ABSOLUTE max? The absolute max is the criteria. Help?

Evaluation of $\Gamma_3$:

$$\oint_{\Gamma_3} f(z) dz = \int_{-R}^{-\epsilon} f(x) dx$$

Again, we will take limits, $\epsilon \to 0$ and $R \to \infty$ soon.

Evaluation of $\Gamma_4$:

$$\oint_{\Gamma_4} f(z) dz = \int_{\pi}^{0} \frac{\left( \log(\epsilon) + i\theta \right)^2 i\epsilon e^{i\theta}}{(\epsilon e^{i\theta})^2 + 1} d\theta$$

$$\left | \oint_{\Gamma_4} f(z) dz \right | \le \int_{0}^{\pi} \left | \frac{\left( \log(\epsilon) + i\theta \right)^2 i\epsilon e^{i\theta}}{(\epsilon e^{i\theta})^2 + 1} \right | d\theta $$

$$( \epsilon) \cdot \int_{0}^{\pi} \left | \frac{\left( \log(\epsilon) + i\theta \right)^2}{(\epsilon e^{i\theta})^2 + 1} \right | d\theta $$

$$\left | \left ( \log(\epsilon) + i\theta \right) \right |^2 = \log^2(\epsilon) - \theta^2 \le \log^2(\epsilon) $$

$$|z^2 + 1| \ge \epsilon^2 - 1$$

$$\therefore \frac{1}{|z^2 + 1|} \le \frac{1}{\epsilon^2 - 1}$$

$$|f(z)| \le \frac{\log^2(\epsilon)}{\epsilon^2 - 1} \le M$$

$$L(\Gamma_{4}) = (1/2)(2)(\pi \epsilon) = \pi \epsilon$$

$$\therefore ML(\Gamma) = \frac{\log^2{\epsilon}\pi\epsilon}{\epsilon^2 - 1}$$

$$\left | \oint f(z) dz \right | \le \int |f(z)| dz \le \frac{\log^2(\epsilon)\pi \epsilon}{\epsilon^2 - 1}$$

$$\lim_{epsilon \to 0} \left | \oint f(z) dz \right | \le \lim_{epsilon \to 0} \int |f(z)| dz \le \lim_{epsilon \to 0} \frac{\log^2(\epsilon)\pi \epsilon}{\epsilon^2 - 1}$$So:

$$\oint_{C} = \int_{\epsilon}^{R} \frac{\log^2(x)}{x^2 + 1} dx + \int_{0}^{\pi} \frac{\left( \log(R) + i\theta \right )^2 iRe^{i\theta} d\theta}{z)^2 + 1} + \int_{-R}^{-\epsilon} \frac{\log^2(x)}{x^2 + 1} dx + \int_{\pi}^{0} \frac{\left( \log(\epsilon) + i\theta \right)^2 i\epsilon e^{i\theta}}{(\epsilon e^{i\theta})^2 + 1} d\theta$$

$$\lim{R \to \infty}_{\epsilon \to 0} \oint_{C} = \int_{0}^{\infty} \frac{\log^2(x)}{x^2 + 1} dx + \int_{0}^{\infty} \frac{\log^2(-x)}{x^2 + 1} dx = \frac{-\pi^3}{4}$$

Therefore,

$$ \int_{0}^{\infty} \frac{\log^2(x)}{x^2 + 1} dx + \int_{0}^{\infty} \frac{\log^2(-x)}{x^2 + 1} dx = \frac{-\pi^3}{4}$$

Then we use $\log(z) = \log(|z|) + iarg(z)$ to get the required integral.

Can you just check the proofs for the integrals converging to $0$?
 

Attachments

  • Log contour.png
    Log contour.png
    3.5 KB · Views: 119
Last edited:
Physics news on Phys.org
The fact that the integral is negative should make you think that there must be something wrong somewhere... isn't it?... take into account that, solving the integral with the procedure illustrated in...

http://mathhelpboards.com/math-notes-49/integrals-natural-logarithm-5286.html

... the result should be...

$\displaystyle \int_{0}^{\infty} \frac{\ln ^{2} x}{1 + x^{2}} \ d x = \int_{0}^{1} \frac{\ln ^{2} x}{1 + x^{2}} \ d x + \int_{1}^{\infty} \frac{\ln ^{2} x}{1 + x^{2}}\ d x = \int_{1}^{\infty} \frac{\ln ^{2} x}{1 + x^{2}}\ d x + \int_{1}^{\infty} \frac{\ln ^{2} x}{1 + x^{2}}\ d x = $

$\displaystyle = 2\ \int_{1}^{\infty} \frac{\ln ^{2} x}{1 + x^{2}}\ d x = 4\ \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k + 1)^{3}} = \frac{\pi ^{3}}{8}$

http://d16cgiik7nzsna.cloudfront.net/82/e7/i98953090._szw380h285_.jpgMerry Christmas from Serbia

$\chi$ $\sigma$
 
Olok said:
Evaluation of $\Gamma_3$:

$$\oint_{\Gamma_3} f(z) dz = \int_{-R}^{-\epsilon} f(x) dx$$

Does that imply that

$$\frac{\log^2(x)}{1+x^2} = \frac{\log^2(z)}{1+z^2}$$

On the negative x-axis ?
 
chisigma said:
The fact that the integral is negative should make you think that there must be something wrong somewhere... isn't it?... take into account that, solving the integral with the procedure illustrated in...

http://mathhelpboards.com/math-notes-49/integrals-natural-logarithm-5286.html

... the result should be...

$\displaystyle \int_{0}^{\infty} \frac{\ln ^{2} x}{1 + x^{2}} \ d x = \int_{0}^{1} \frac{\ln ^{2} x}{1 + x^{2}} \ d x + \int_{1}^{\infty} \frac{\ln ^{2} x}{1 + x^{2}}\ d x = \int_{1}^{\infty} \frac{\ln ^{2} x}{1 + x^{2}}\ d x + \int_{1}^{\infty} \frac{\ln ^{2} x}{1 + x^{2}}\ d x = $

$\displaystyle = 2\ \int_{1}^{\infty} \frac{\ln ^{2} x}{1 + x^{2}}\ d x = 4\ \sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k + 1)^{3}} = \frac{\pi ^{3}}{8}$

Merry Christmas from Serbia

$\chi$ $\sigma$

$$I = \int_{0}^{\infty} \frac{\log^2(x)}{x^2 + 1} \,dx + \int_{0}^{\infty} \frac{\log^2(-x)}{x^2 + 1} \,dx $$

$$\log(-x) = \log(x) + i\theta$$

Whatever theta is in $0 \le \theta \le \pi$$$I = \int_{0}^{\infty} \frac{\log^2(x)}{x^2 + 1} \,dx + \int_{0}^{\infty} \frac{\left( \log(x) + i\theta \right)^2}{x^2 + 1} \,dx$$

$$I = \int_{0}^{\infty} \frac{\log^2(x)}{x^2 + 1} \,dx + \int_{0}^{\infty} \frac{\log^2(x) + 2i\theta\log(x) - \theta^2}{x^2 + 1} \,dx$$

Because theta is $\pi$ for the negative x-axis and $0$ for positive x-axis.

$$I = 2\int_{0}^{\infty} \frac{\log^2(x)}{x^2 + 1} \,dx + \int_{0}^{\infty} \frac{2i\pi\log(x) - \pi^2}{x^2 + 1} \,dx$$

$$I = 2\int_{0}^{\infty} \frac{\log^2(x)}{x^2 + 1} \,dx + 0 - \pi^2 \int_{0}^{\infty} \frac{1}{x^2 + 1} dx = 2\int_{0}^{\infty} \frac{\log^2(x)}{x^2 + 1} \,dx - (\pi^3)/2 = -\pi^3/4$$

$$2I = \frac{\pi^3}{4}$$

$$I = \frac{\pi^3}{8}$$

Now that that is done, I still need a way to prove:

$$\int_{0}^{\infty} \frac{2\pi\log(x)}{x^2 + 1} dx = 0$$

With complex analysis.

We could use the substitution $t = 1/x$ then prove that $-I = I$ which implies $I=0$ but that isn't rigorous at all. The goal is

Prove:

$$\int_{0}^{\infty} \frac{\log(x)}{x^2 + 1} dx = 0$$

I don't know, well, we'll see or we can always justify $x = 1/t$ so I suppose its fine.

Also, just a question,

How can we use contour integration with integrals from $0 \to 1$

My best guess would be to use the unit circle??

Thanks, and Merry Christmas from Turkmenistan.

@Zaid, it does imply the negative x-axis.
 
Olok said:
$$I = \int_{0}^{\infty} \frac{\log^2(x)}{x^2 + 1} \,dx + \int_{0}^{\infty} \frac{\log^2(-x)}{x^2 + 1} \,dx $$

I would rewrite it as

$$\int_{-\infty}^0 \frac{(\ln |x|+i\pi)^2}{x^2+1}\,dx = \int_{0}^\infty \frac{(\ln (x)+i\pi)^2}{x^2+1}\,dx $$

For the other integral

$$I=\int^\infty_0 \frac{\log(x)}{x^2+1}\,dx$$

You can use the same method by integrating

$$f(z)= \frac{\log(z)}{1+z^2}$$

or , simply prove that $I=-I$.
 
ZaidAlyafey said:
I would rewrite it as

$$\int_{-\infty}^0 \frac{(\ln |x|+i\pi)^2}{x^2+1}\,dx = \int_{0}^\infty \frac{(\ln (x)+i\pi)^2}{x^2+1}\,dx $$

For the other integral

$$I=\int^\infty_0 \frac{\log(x)}{x^2+1}\,dx$$

You can use the same method by integrating

$$f(z)= \frac{\log(z)}{1+z^2}$$

or , simply prove that $I=-I$.

It is actually very complicated from research, Ill work on it tomorrow and post updates.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 14 ·
Replies
14
Views
4K