Consider the integral:(adsbygoogle = window.adsbygoogle || []).push({});

$$\int_{0}^{\infty} \frac{\log^2(x)}{x^2 + 1} dx$$

$R$ is the big radius, $\delta$ is the small radius.

Actually, lets consider $u$ the small radius. Let $\delta = u$

Ultimately the goal is to let $u \to 0$

We can parametrize,

$$z = ue^{i\theta}$$

$$\int_{\delta} f(z)dz = (-)\cdot\int_{0}^{\pi} \frac{(i\theta + \log(u))^2\cdot (uie^{i\theta})}{(ue^{i\theta})^2 + 1} d\theta$$

$$\left | \int_{0}^{\pi} \frac{(i\theta + \log(u))^2\cdot (uie^{i\theta})}{(ue^{i\theta})^2 + 1} d\theta \right | \le \int_{0}^{\pi} \frac{|(i\theta + \log(u))|^2\cdot(u)}{|(ue^{i\theta})^2 + 1 |} d\theta$$

$$|(ue^{i\theta})^2 + 1 | < u^2 + 1 $$

$$\frac{1}{u^2 + 1} < \frac{1}{|(ue^{i\theta})^2 + 1 |}$$

Since the maximum value of $\theta$ is $\theta = \pi$

$$|(i\theta + \log(u))| = \sqrt{\log^2(u) - \theta^2} \le \sqrt{\log^2(u) + \pi^2}$$

So:

$$|(i\theta + \log(u))|^2 \le \log^2(u) + \pi^2$$

Then:

$$|(i\theta + \log(u))|^2 \le \log^2(u) + \pi^2$$

For values $u$ near $0$.

$$(u)|(i\theta + \log(u))|^2 \le (\log^2(u) + \pi^2)u \le (\pi^2)u + 5\pi^2$$

Therefore,

$$\frac{|\log(z)|}{|z^2 + 1|} \le \frac{(\pi^2)u + 5\pi^2}{u^2 + 1}$$

Then we take the limit as $u \to 0$ which makes the RHS of the inequality 0.

hence the LHS upperbound is $0$.

So is the contour integral around the small semi circle $\delta$ = 0?

How do I do this?

Thanks

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Proving integral on small contour is equal to 0.

Loading...

**Physics Forums | Science Articles, Homework Help, Discussion**