Evaluating a momentum operator

  • Thread starter Thread starter JD_PM
  • Start date Start date
  • Tags Tags
    Momentum Operator
Click For Summary
The discussion focuses on evaluating the momentum operator through the term ##\dot A_{\mu} \nabla A^{\mu}##, requiring the evaluation of mode expansions for the vector potential ##A^{\mu}##. Participants discuss the time and spatial derivatives of the vector potential and how to handle the resulting expressions, particularly the integration over momentum space. The conversation highlights the importance of using orthonormality conditions for polarization vectors and the need to carefully manage momentum integrals to achieve the desired results. Ultimately, the participants are working towards a clearer understanding of how to derive the correct expressions while addressing issues related to terms and factors in their calculations.
JD_PM
Messages
1,125
Reaction score
156
Homework Statement
Show that the momentum operator ##\hat{\vec P}## yields



$$\hat{\vec P} = \int d^3 \vec x \frac{1}{c^2} \mathcal{N} \left( \dot A_{\mu} \nabla A^{\mu} \right) = \sum_{\vec k} \hbar \vec k N( \vec k)$$



Where ##\mathcal{N}## stands for normal-ordering and ##N( \vec k)## is the number operator

##N( \vec k) = \sum_{r=0}^3 \zeta_r a_r^{\dagger} (\vec k) a_r^{\dagger} (\vec k)## (for instance, EQ ##5.33## Mandl & Shaw)
Relevant Equations
Please see below
I think I get the approach. We first need to evaluate the term ##\dot A_{\mu} \nabla A^{\mu}## and then evaluate the 3D space integral; we may need to take the limit ##V \rightarrow \infty## (i.e ##\sum_{\vec k} (2 \pi)^3/V \rightarrow \int d^3 \vec k##) at some point.

The mode expansions of the vector potential ##A^{\mu}=A_{+}^{\mu} + A_{-}^{\mu}## are

$$A_{-}^{\mu}=\sum_{r=0}^3 \sum_{\vec k} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \epsilon_r^{\mu} a_r^{\dagger}(\vec k) e^{ik \cdot x} \right] \tag{1.1}$$

$$A_{+}^{\mu}=\sum_{r=0}^3 \sum_{\vec k} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \epsilon_r^{\mu} a_r(\vec k) e^{-i \vec k \cdot \vec x} \right] \tag{1.2}$$

The time-derivatives of ##(1.1)## and ##(1.2)## are

$$\dot A_{-}^{\mu} = ik^0 e^{ik^0 x^0}\sum_{r=0}^3 \sum_{\vec k} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \epsilon_r^{\mu} a_r^{\dagger}(\vec k) e^{-i \vec k \cdot \vec x} \right]$$

$$\dot A_{+}^{\mu} = -ik^0 e^{-ik^0 x^0}\sum_{r=0}^3 \sum_{\vec k} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \epsilon_r^{\mu} a_r(\vec k) e^{i \vec k \cdot \vec x} \right]$$

The spatial-derivatives of ##(1.1)## and ##(1.2)## are

$$ \nabla A_-^{\mu} = -i e^{ik^0 x^0}\sum_{r=0}^3 \sum_{\vec k} \left[ \vec k \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \epsilon_r^{\mu} a_r^{\dagger}(\vec k) e^{-i \vec k \cdot \vec x} \right]$$

$$ \nabla A_+^{\mu} = i e^{-ik^0 x^0}\sum_{r=0}^3 \sum_{\vec k} \left[ \vec k \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \epsilon_r^{\mu} a_r(\vec k) e^{i \vec k \cdot \vec x} \right]$$

We evaluate ##\dot A_{\mu} \nabla A^{\mu}##

$$\dot A_{\mu} \nabla A^{\mu}=(\dot A^{+}_{\mu}+ \dot A^{-}_{\mu})(\nabla A_+^{\mu} +\nabla A_-^{\mu})=\dot A^{+}_{\mu}\nabla A_+^{\mu} + \dot A^{-}_{\mu}\nabla A_-^{\mu} + \dot A^{+}_{\mu}\nabla A_-^{\mu}+\dot A^{+}_{\mu}\nabla A_+^{\mu}$$

Let's evaluate ##\dot A^{+}_{\mu}\nabla A_+^{\mu}## explicitly

$$\dot A^{+}_{\mu}\nabla A_+^{\mu}=-ik^0 e^{-ik^0 x^0}\sum_{r=0}^3 \sum_{\vec k} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \eta_{\mu \nu} \epsilon_r^{\nu} a_r(\vec k) e^{i \vec k \cdot \vec x} \right]i e^{-ik^0 x^0} \sum_{r=0}^3 \sum_{\vec k} \left[ \vec k \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \epsilon_r^{\mu} a_r(\vec k) e^{i \vec k \cdot \vec x} \right] \tag{*}$$

OK ##(*)## looks messy; let's focus on relevant terms

$$\dot A^{+}_{\mu}\nabla A_+^{\mu} \sim \eta_{\mu \nu} \epsilon_r^{\nu} a_r(\vec k) \vec k \epsilon_r^{\mu} a_r(\vec k)= \eta_{\mu \nu} \epsilon_r^{\nu} \vec k \epsilon_r^{\mu} a_r(\vec k) a_r(\vec k)\tag{**}$$

Once here, based on the orthonormality and completeness of the polarization vectors

55456765677.png


And the customary choice of polarization vectors

1212121212121213454.png


So the idea would be using ##(5.19)## but we do not have the ##\zeta_r## factor. Besides, the 3-vector ##\vec k## suggests we may have to use the orthogonal conditions ##(5.22b)##.

How could we evaluate ##(*), (**)## then?

Thank you :biggrin:
 
  • Like
Likes vanhees71 and Delta2
Physics news on Phys.org
It's a pretty longish calculation. You have to be a bit more careful though when looking at products and use different momenta for each of the factors and then interchange the momentum integrals with the spatial integral making use of
$$\int_{\mathbb{R}^3} \mathrm{d}^3 x \exp(\mathrm{i} (\vec{k}_1-\vec{k}_2) \cdot \vec{x})=(2 \pi)^3 \delta^{(3)}(\vec{k}_1-\vec{k}_2).$$
Then you can do one of the then trivial momentum integrations and are left with the other momentum integral leading to the right-hand side of the formula you want to prove. Just keep calculating!
 
  • Like
Likes JD_PM and Delta2
Hi vanhees71, I see it better now thanks to your comments.

OK let me rewrite ##(*)##, distinguishing momentum and polarization vectors. I also noticed I missed a ##1/c## factor (which pops up due to ##\partial_{0}=\partial/(c\partial t)##)

$$\dot A^{+}_{\mu}\nabla A_+^{\mu}=\sum_{r,s=0}^3 \sum_{\vec k, \vec k'} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \Big(\frac{\hbar c^2}{2V \omega_{\vec k'}} \Big)^{1/2} k^0/c \ \eta_{\mu \nu} \epsilon_r^{\nu}(\vec k) a_r(\vec k) e^{-i k \cdot x} \vec k' \epsilon_s^{\mu}(\vec k') a_s(\vec k') e^{-i k' \cdot x} \right]$$

$$=\sum_{r,s=0}^3 \sum_{\vec k, \vec k'} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \Big(\frac{\hbar c^2}{2V \omega_{\vec k'}} \Big)^{1/2} k^0/c \ \vec k'\epsilon_{r \mu}(\vec k)\epsilon_s^{\mu}(\vec k') a_r(\vec k) a_s(\vec k') e^{-i (k+k') \cdot x} \right]$$

Using the orthonormality condition ##(5.18)## and ##k^0 = \omega_{\vec k} / c##

$$=-\sum_{r,s=0}^3 \sum_{\vec k, \vec k'} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \Big(\frac{\hbar c^2}{2V \omega_{\vec k'}} \Big)^{1/2} k^0/c \ \vec k'\zeta_r \delta_{r,s}\delta_{\vec k, \vec k'} a_r(\vec k) a_s(\vec k') e^{-i (k+k') \cdot x} \right]$$ $$=-\sum_{r}^3 \sum_{\vec k} \left[ \Big(\frac{\hbar }{2V} \Big) \vec k \zeta_r a_r(\vec k) a_r(\vec k) e^{-2i k \cdot x} \right]$$

Mmm this (at least) smells good! We've got the ##\hbar \vec k## term and ##\zeta_r##. However there are two main issues: I do not get the number operator and ##e^{-2i k \cdot x}## is not the expected factor (we would expect something like ##e^{i (k-k') \cdot x}##, so that the Dirac-delta function could be obtained after integrating over momentum space).

I considered the possibility that this term may not contribute to the final answer but I do think it does, as none of the other 3 terms is ##\sim a_r(\vec k) a_r(\vec k)##...

Or maybe I just need to think more about it 😅
 
You forgot the ##\vec{x}##-integral. Only then the resulting ##\delta^{(3)}(\vec{k}+\vec{k}')## allows you to use the orthonormality condition for the polarization vectors but then also you have the factor ##\vec{k}##!
 
  • Like
Likes JD_PM
vanhees71 said:
You forgot the ##\vec{x}##-integral

Oh I see! Let's try again

$$\frac{1}{c^2} \int d^3 \vec x \sum_{r,s=0}^3 \sum_{\vec k, \vec k'} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \Big(\frac{\hbar c^2}{2V \omega_{\vec k'}} \Big)^{1/2} k^0 \ \vec k'\epsilon_{r \mu}(\vec k)\epsilon_{s}^{\mu}(\vec k') a_r(\vec k) a_s(\vec k') e^{-i (k+k') \cdot x} \right]=$$

$$= \frac{1}{c^2} \sum_{r,s=0}^3 \sum_{\vec k, \vec k'} \left[ \Big(\frac{\hbar c^2}{2V \omega_{\vec k}} \Big)^{1/2} \Big(\frac{\hbar c^2}{2V \omega_{\vec k'}} \Big)^{1/2} k^0 \ \vec k'\epsilon_{r \mu}(\vec k)\epsilon_{s}^{\mu}(\vec k') a_r(\vec k) a_s(\vec k') (2 \pi)^3 \delta^{(3)}(\vec k + \vec k') e^{-i (k^0+k'^0) x}\right] \tag{@}$$

Where I've performed the 3D integral. Taking the limit ##V \rightarrow \infty## (i.e ##\sum_{\vec k} (2 \pi)^3/V \rightarrow \int d^3 \vec k##) and the orthonormality condition ##(5.18)## we get

$$@ = \frac{1}{c^2} \sum_{r,s=0}^3 \sum_{\vec k} \int d^3 \vec k' \left[ \Big(\frac{\hbar c^2}{2 \omega_{\vec k}} \Big)^{1/2} \Big(\frac{\hbar c^2}{2 \omega_{\vec k'}} \Big)^{1/2} k^0 \ \vec k'\epsilon_{r \mu}(\vec k)\epsilon_{s}^{\mu}(\vec k') a_r(\vec k) a_s(\vec k') \delta^{(3)}(\vec k + \vec k') e^{-i (k^0+k'^0) x}\right]=$$

$$= \sum_{r,s=0}^3 \sum_{\vec k} \left[ \Big(\frac{\hbar }{2} \Big) \vec k \ \epsilon_{r \mu}(\vec k)\epsilon_{s}^{\mu}(\vec k) a_r(\vec k) a_s(\vec k) e^{-i (k^0+k'^0) x}\right]=$$

$$= -\frac{\hbar }{2} \sum_{r=0}^3 \sum_{\vec k} \left[ \vec k \
\zeta_r a_r(\vec k) a_r(\vec k) e^{-i (k^0+k'^0) x}\right]$$

Mmm it does not look right, as I am not getting the number operator, I get the extra factor ##e^{-i (k^0+k'^0) x}## and the -ive sign.

I have the same issue with the term

$$\dot A^{-}_{\mu}\nabla A_-^{\mu} \sim -a_r^{\dagger} (\vec k) a_r^{\dagger} (\vec k)$$

Thinking...
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K
Replies
7
Views
2K
Replies
18
Views
2K
Replies
8
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
27
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K