MHB Evaluating $\displaystyle \int f(z)dz$ with $a>0$

  • Thread starter Thread starter polygamma
  • Start date Start date
Click For Summary
The discussion focuses on evaluating the integral of the function f(z) = e^(-z^2)/z around a specific contour to demonstrate that for a > 0, the integral from 0 to infinity of e^(-x^2) multiplied by (a cos(2ax) + x sin(2ax))/(x^2 + a^2) equals (π/2)e^(-a^2). Participants emphasize the importance of providing complete solutions rather than hints, adhering to community guidelines. The mathematical approach involves contour integration techniques to derive the result. The conversation underscores the significance of clarity and thoroughness in problem-solving within the forum. Overall, the integral evaluation is framed within the context of complex analysis and its applications.
polygamma
Messages
227
Reaction score
0
By integrating $ \displaystyle f(z) = \frac{e^{-z^{2}}}{z}$ around the appropriate contour, or otherwise, show that for $a>0$,

$$ \int_{0}^{\infty} e^{-x^{2}} \ \frac{a \cos (2ax) + x \sin(2ax)}{x^{2}+a^{2}} \ dx = \frac{\pi}{2}e^{-a^{2}}.$$
 
Mathematics news on Phys.org
Random Variable said:
By integrating $ \displaystyle f(z) = \frac{e^{-z^{2}}}{z}$ around the appropriate contour, or otherwise, show that for $a>0$,

$$ \int_{0}^{\infty} e^{-x^{2}} \ \frac{a \cos (2ax) + x \sin(2ax)}{x^{2}+a^{2}} \ dx = \frac{\pi}{2}e^{-a^{2}}.$$
Let u = 2 a x. The rest is trivial and is left for the interested student.

-Dan
 
topsquark said:
Let u = 2 a x. The rest is trivial and is left for the interested student.

-Dan

Dan, Dan, Dan...we ask that hints be left up to the OP to give, and that all others post complete solutions. (Mmm)

http://mathhelpboards.com/challenge-questions-puzzles-28/guidelines-posting-answering-challenging-problem-puzzle-3875.html
 
By integrating $\frac{e^{-z^{2}}}{z}$ around a rectangle with vertices at $\pm R \pm ia$ and then letting $R \to \infty$, we get $$\int_{-\infty}^{\infty} \frac{e^{-(x-ia)^{2}}}{x-ia} \, dx - \int_{-\infty}^{\infty}\frac{e^{-(x+ia)^{2}}}{x+ia} \, dx = 2 \pi i \, \text{Res} \left[ \frac{e^{-z^{2}}}{z}, 0\right] = 2 \pi i $$

Combining the first two integrals,

$$ e^{a^{2}}\int_{-\infty}^{\infty} e^{-x^{2}} \, \frac{ e^{2iax}(x+ia) - e^{-2iax}(x-ia)}{x^{2}+a^{2}} \, dx = e^{a^{2}}\int_{-\infty}^{\infty} e^{-x^{2}} \frac{2ix \sin(2ax) +2ia \cos(2ax)}{x^{2}+a^{2}} \, dx = 2 \pi i $$

So

$$\int_{-\infty}^{\infty} e^{-x^{2}} \frac{x \sin(2ax) +a \cos(2ax)}{x^{2}+a^{2}} \, dx = \pi e^{-a^{2}} $$

The result then follows since the integrand is even.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
922