MHB Evaluating $\displaystyle \int f(z)dz$ with $a>0$

  • Thread starter Thread starter polygamma
  • Start date Start date
AI Thread Summary
The discussion focuses on evaluating the integral of the function f(z) = e^(-z^2)/z around a specific contour to demonstrate that for a > 0, the integral from 0 to infinity of e^(-x^2) multiplied by (a cos(2ax) + x sin(2ax))/(x^2 + a^2) equals (π/2)e^(-a^2). Participants emphasize the importance of providing complete solutions rather than hints, adhering to community guidelines. The mathematical approach involves contour integration techniques to derive the result. The conversation underscores the significance of clarity and thoroughness in problem-solving within the forum. Overall, the integral evaluation is framed within the context of complex analysis and its applications.
polygamma
Messages
227
Reaction score
0
By integrating $ \displaystyle f(z) = \frac{e^{-z^{2}}}{z}$ around the appropriate contour, or otherwise, show that for $a>0$,

$$ \int_{0}^{\infty} e^{-x^{2}} \ \frac{a \cos (2ax) + x \sin(2ax)}{x^{2}+a^{2}} \ dx = \frac{\pi}{2}e^{-a^{2}}.$$
 
Mathematics news on Phys.org
Random Variable said:
By integrating $ \displaystyle f(z) = \frac{e^{-z^{2}}}{z}$ around the appropriate contour, or otherwise, show that for $a>0$,

$$ \int_{0}^{\infty} e^{-x^{2}} \ \frac{a \cos (2ax) + x \sin(2ax)}{x^{2}+a^{2}} \ dx = \frac{\pi}{2}e^{-a^{2}}.$$
Let u = 2 a x. The rest is trivial and is left for the interested student.

-Dan
 
topsquark said:
Let u = 2 a x. The rest is trivial and is left for the interested student.

-Dan

Dan, Dan, Dan...we ask that hints be left up to the OP to give, and that all others post complete solutions. (Mmm)

http://mathhelpboards.com/challenge-questions-puzzles-28/guidelines-posting-answering-challenging-problem-puzzle-3875.html
 
By integrating $\frac{e^{-z^{2}}}{z}$ around a rectangle with vertices at $\pm R \pm ia$ and then letting $R \to \infty$, we get $$\int_{-\infty}^{\infty} \frac{e^{-(x-ia)^{2}}}{x-ia} \, dx - \int_{-\infty}^{\infty}\frac{e^{-(x+ia)^{2}}}{x+ia} \, dx = 2 \pi i \, \text{Res} \left[ \frac{e^{-z^{2}}}{z}, 0\right] = 2 \pi i $$

Combining the first two integrals,

$$ e^{a^{2}}\int_{-\infty}^{\infty} e^{-x^{2}} \, \frac{ e^{2iax}(x+ia) - e^{-2iax}(x-ia)}{x^{2}+a^{2}} \, dx = e^{a^{2}}\int_{-\infty}^{\infty} e^{-x^{2}} \frac{2ix \sin(2ax) +2ia \cos(2ax)}{x^{2}+a^{2}} \, dx = 2 \pi i $$

So

$$\int_{-\infty}^{\infty} e^{-x^{2}} \frac{x \sin(2ax) +a \cos(2ax)}{x^{2}+a^{2}} \, dx = \pi e^{-a^{2}} $$

The result then follows since the integrand is even.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top