Evaluating $\displaystyle \int f(z)dz$ with $a>0$

  • Context: MHB 
  • Thread starter Thread starter polygamma
  • Start date Start date
Click For Summary
SUMMARY

The integral evaluation of $\displaystyle \int_{0}^{\infty} e^{-x^{2}} \frac{a \cos (2ax) + x \sin(2ax)}{x^{2}+a^{2}} \, dx$ for $a>0$ results in the exact value of $\frac{\pi}{2} e^{-a^{2}}$. This conclusion is reached by integrating the function $f(z) = \frac{e^{-z^{2}}}{z}$ around a suitable contour in the complex plane. The discussion emphasizes the importance of contour integration techniques in solving this type of integral problem.

PREREQUISITES
  • Complex analysis, specifically contour integration
  • Understanding of Laplace transforms
  • Knowledge of trigonometric integrals
  • Familiarity with the properties of exponential functions
NEXT STEPS
  • Study contour integration methods in complex analysis
  • Explore the application of Laplace transforms in integral evaluations
  • Learn about the residue theorem and its applications
  • Investigate the properties of Fourier transforms related to oscillatory integrals
USEFUL FOR

Mathematicians, physics students, and anyone involved in advanced calculus or complex analysis who seeks to deepen their understanding of integral evaluation techniques.

polygamma
Messages
227
Reaction score
0
By integrating $ \displaystyle f(z) = \frac{e^{-z^{2}}}{z}$ around the appropriate contour, or otherwise, show that for $a>0$,

$$ \int_{0}^{\infty} e^{-x^{2}} \ \frac{a \cos (2ax) + x \sin(2ax)}{x^{2}+a^{2}} \ dx = \frac{\pi}{2}e^{-a^{2}}.$$
 
Physics news on Phys.org
Random Variable said:
By integrating $ \displaystyle f(z) = \frac{e^{-z^{2}}}{z}$ around the appropriate contour, or otherwise, show that for $a>0$,

$$ \int_{0}^{\infty} e^{-x^{2}} \ \frac{a \cos (2ax) + x \sin(2ax)}{x^{2}+a^{2}} \ dx = \frac{\pi}{2}e^{-a^{2}}.$$
Let u = 2 a x. The rest is trivial and is left for the interested student.

-Dan
 
topsquark said:
Let u = 2 a x. The rest is trivial and is left for the interested student.

-Dan

Dan, Dan, Dan...we ask that hints be left up to the OP to give, and that all others post complete solutions. (Mmm)

http://mathhelpboards.com/challenge-questions-puzzles-28/guidelines-posting-answering-challenging-problem-puzzle-3875.html
 
By integrating $\frac{e^{-z^{2}}}{z}$ around a rectangle with vertices at $\pm R \pm ia$ and then letting $R \to \infty$, we get $$\int_{-\infty}^{\infty} \frac{e^{-(x-ia)^{2}}}{x-ia} \, dx - \int_{-\infty}^{\infty}\frac{e^{-(x+ia)^{2}}}{x+ia} \, dx = 2 \pi i \, \text{Res} \left[ \frac{e^{-z^{2}}}{z}, 0\right] = 2 \pi i $$

Combining the first two integrals,

$$ e^{a^{2}}\int_{-\infty}^{\infty} e^{-x^{2}} \, \frac{ e^{2iax}(x+ia) - e^{-2iax}(x-ia)}{x^{2}+a^{2}} \, dx = e^{a^{2}}\int_{-\infty}^{\infty} e^{-x^{2}} \frac{2ix \sin(2ax) +2ia \cos(2ax)}{x^{2}+a^{2}} \, dx = 2 \pi i $$

So

$$\int_{-\infty}^{\infty} e^{-x^{2}} \frac{x \sin(2ax) +a \cos(2ax)}{x^{2}+a^{2}} \, dx = \pi e^{-a^{2}} $$

The result then follows since the integrand is even.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K