MHB Evaluating Double Integral $II_{5d}$

Click For Summary
The discussion focuses on evaluating the double integral \( II_{5d} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \frac{1}{(x^2+1)(y^2+1)} \, dy \, dx \). The first step involves computing the integral \( I_1 = \int_{-\infty}^{\infty} \frac{1}{u^2+1} \, du \), which results in \( \pi \). The double integral can then be expressed as \( I = \int_{-\infty}^{\infty} \frac{1}{x^2+1} \int_{-\infty}^{\infty} \frac{1}{y^2+1} \, dy \, dx \). This leads to the conclusion that \( I = \pi \cdot \pi = \pi^2 \). The evaluation is confirmed as correct, marking progress in solving the integral.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\textsf{d. Evaluate :}\\$
\begin{align*}\displaystyle
II_{5d}&=\int_{-\infty}^{+\infty}
\int_{-\infty}^{+\infty}
\frac{1}{(x^2+1)(y^2+1)}
\, dy dx
\end{align*}
 
Last edited:
Physics news on Phys.org
Re: double Integral

First, I would begin by computing:

$$I_1=\int_{-\infty}^{\infty}\frac{1}{u^2+1}\,du=\lim_{t\to\infty}\left(\int_{-t}^{t}\frac{1}{u^2+1}\,du\right)=\lim_{t\to\infty}\left(\left[\arctan(t)-\arctan(-t)\right]_{-t}^{t}\right)=2\lim_{t\to\infty}\left(\arctan(t)\right)=2\cdot\frac{\pi}{2}=\pi$$

And now we can write:

$$I=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\frac{1}{\left(x^2+1\right)\left(y^2+1\right)}\,dy\,dx=\int_{-\infty}^{\infty}\frac{1}{x^2+1}\int_{-\infty}^{\infty}\frac{1}{y^2+1}\,dy\,dx$$

Can you now express $I$ as a function of $I_1$?
 
Re: double Integral

so would this simply be:

$$\pi \cdot \pi = \pi^2$$
 
Re: double Integral

karush said:
so would this simply be:

$$\pi \cdot \pi = \pi^2$$

Yes, that's correct. :)
 
Re: double Integral

ahhh progress😎
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K