Evaluating Limits: Understanding and Solving Common Problems | Explained

  • Thread starter Thread starter Saru
  • Start date Start date
  • Tags Tags
    Limits
Click For Summary
The discussion focuses on evaluating three specific limits, with participants seeking guidance on methods to solve them. For limit (a), L'Hopital's rule is suggested but not permitted, prompting a search for alternative approaches. Limit (b) involves handling modulus functions, with advice to express them as regular functions near x=0. For limit (c), expanding the sine functions using angle sum identities is recommended. Overall, the thread emphasizes the importance of attempting the problems and understanding the underlying concepts before seeking help.
Saru
Messages
4
Reaction score
0
Evaluate the following limits

a) lim x->1 ((x^(1/3) -1) / (x^(1/2) - 1))

b) lim x->0 (( l 2x-1 l - l 2x+1 l ) /x)
(FYI : there's modulus at 2x-1 and 2x+1 )

c) lim x->0 ((sin(a+2x)-2sin(a+x)+sin a) / x^2 )

Thankz
Please explain in details
 
Last edited:
Physics news on Phys.org
Hi Saru, welcome to PF

the idea is to attempt the problem and someone will try and help you through - so you have any working or ideas?
 
Also, please provide some relevant information. For example, do you need to show the limits from the definition? Are you allowed to use L'Hopital's rule?
 
any methods or working will do.. and I've totally no idea how to do it..
Plus my assignment is due this Wed..
 
It's good that you have asked for help this early then, it will give you two days to finish it.

So a good first try is always to check if you can't just plug in the numbers.
For example
\lim_{x \to 0} \frac{x^2 + 7x - 8}{\sqrt{x^3} - 3 \sin(x) + 7 \cos(x) + 1}
looks terrible, but plugging in x = 0 shows that the limit is -1.

Did you try that already?
 
Saru said:
any methods or working will do.. and I've totally no idea how to do it..
Plus my assignment is due this Wed..

You need to be sure you know what l'Hopital's rule is before you use it, as well as being absolutely sure that it is valid on your assignment. If you are sure you can use it, then both (a) and (b) can be done using l'Hopital's rule.
 
just found out that I'm not suppose to use Lhopital rule to solve it..
any other methods??
 
do you have any ideas or attempts?

here's some to get you started, but you need to show you're trying

for a) L'Hopital would work quite easily, though you can't use it...

for b) try writing out the modulus as a normal function as it behaves in a region around x = 0. This shouldn;t be an issue as the modulus only has a kink where the argument changes from poistive to negative

with arguments 2x-1 and 2x+1, this will only be around the points x=1/2 and x= -1/2

for c) as a start, i would try expanding the expressions in terms of angle sum and double angle formula, to see if that helps
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
4K
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
971