MHB Evaluating Sum Compute: n+1 Roots

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary
The discussion focuses on computing the expression $$\left\lfloor{\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}}\right\rfloor$$. Participants clarify that the goal is to find the floor of the sum of these roots. The conversation highlights the importance of correctly interpreting the mathematical notation and the implications for the final result. There is acknowledgment of a previous misunderstanding regarding the problem's requirements. The thread emphasizes the significance of precision in mathematical computations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Compute $$\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}$$.
 
Mathematics news on Phys.org
anemone said:
Compute $$\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}=S$$.
it should be :
for any $n$
$n<S<n+1$
 
Albert said:
it should be :
for any $n$
$n<S<n+1$

Ops! You're right, and the problem is actually asked to compute $$
\left\lfloor{\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}}\right\rfloor$$.:o
 
anemone said:
Ops! You're right, and the problem is actually asked to compute $$
\left\lfloor{\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}}\right\rfloor$$.:o

We have for t positive integer
$(1+x)^{t+1} > 1 + x(t+1)$
or $(1+x) > \sqrt[t+1]{1 + x(t+1)}$
putting $x = \frac{1}{t(t+1)}$ we get
$1+\frac{1}{t(t+1)} > \sqrt[t+1]{1 + \frac{1}{t}}$
or $1+\frac{1}{t(t+1)} > \sqrt[t+1]{\frac{t+1}{t}}$
or $1+\frac{1}{t} - \frac{1}{t+1} > \sqrt[t+1]{\frac{t+1}{t}}$
adding the above from t = 1 to n we get
${\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}} <n + 1 - \frac{1}{n+1}$
as each term is greater than one we have
${\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}} > n $
as the value is between n and n + 1 so
$\left\lfloor{\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}}\right\rfloor = n $
 
kaliprasad said:
We have for t positive integer
$(1+x)^{t+1} > 1 + x(t+1)$
or $(1+x) > \sqrt[t+1]{1 + x(t+1)}$
putting $x = \frac{1}{t(t+1)}$ we get
$1+\frac{1}{t(t+1)} > \sqrt[t+1]{1 + \frac{1}{t}}$
or $1+\frac{1}{t(t+1)} > \sqrt[t+1]{\frac{t+1}{t}}$
or $1+\frac{1}{t} - \frac{1}{t+1} > \sqrt[t+1]{\frac{t+1}{t}}$
adding the above from t = 1 to n we get
${\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}} <n + 1 - \frac{1}{n+1}$
as each term is greater than one we have
${\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}} > n $
as the value is between n and n + 1 so
$\left\lfloor{\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}}\right\rfloor = n $

I privately told anemone that the answer was $n$, but I was told I must show my work. (Crying)
 
kaliprasad said:
We have for t positive integer
$(1+x)^{t+1} > 1 + x(t+1)$
or $(1+x) > \sqrt[t+1]{1 + x(t+1)}$
putting $x = \frac{1}{t(t+1)}$ we get
$1+\frac{1}{t(t+1)} > \sqrt[t+1]{1 + \frac{1}{t}}$
or $1+\frac{1}{t(t+1)} > \sqrt[t+1]{\frac{t+1}{t}}$
or $1+\frac{1}{t} - \frac{1}{t+1} > \sqrt[t+1]{\frac{t+1}{t}}$
adding the above from t = 1 to n we get
${\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}} <n + 1 - \frac{1}{n+1}$
as each term is greater than one we have
${\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}} > n $
as the value is between n and n + 1 so
$\left\lfloor{\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}}\right\rfloor = n $

Very well done, kaliprasad!(Cool)
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K