Evaluating Sum Compute: n+1 Roots

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Sum
Click For Summary
SUMMARY

The discussion focuses on evaluating the expression $$\left\lfloor{\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}}\right\rfloor$$. Participants clarify that the goal is to compute the floor of the sum of various roots, specifically from $$n+1$$ down to $$2$$. The conversation highlights the importance of correctly interpreting the problem statement and emphasizes the final result as a floor function of the computed sum.

PREREQUISITES
  • Understanding of floor functions in mathematics
  • Familiarity with nth roots and their properties
  • Basic algebraic manipulation skills
  • Knowledge of sequences and series
NEXT STEPS
  • Explore the properties of floor functions in mathematical expressions
  • Study the behavior of sequences involving roots, particularly $$\sqrt[n]{x}$$
  • Investigate convergence and limits of sequences as $$n$$ approaches infinity
  • Learn about advanced summation techniques in calculus
USEFUL FOR

Mathematicians, educators, and students interested in advanced algebra, particularly those focusing on sequences, roots, and floor functions in mathematical analysis.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Compute $$\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}$$.
 
Mathematics news on Phys.org
anemone said:
Compute $$\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}=S$$.
it should be :
for any $n$
$n<S<n+1$
 
Albert said:
it should be :
for any $n$
$n<S<n+1$

Ops! You're right, and the problem is actually asked to compute $$
\left\lfloor{\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}}\right\rfloor$$.:o
 
anemone said:
Ops! You're right, and the problem is actually asked to compute $$
\left\lfloor{\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}}\right\rfloor$$.:o

We have for t positive integer
$(1+x)^{t+1} > 1 + x(t+1)$
or $(1+x) > \sqrt[t+1]{1 + x(t+1)}$
putting $x = \frac{1}{t(t+1)}$ we get
$1+\frac{1}{t(t+1)} > \sqrt[t+1]{1 + \frac{1}{t}}$
or $1+\frac{1}{t(t+1)} > \sqrt[t+1]{\frac{t+1}{t}}$
or $1+\frac{1}{t} - \frac{1}{t+1} > \sqrt[t+1]{\frac{t+1}{t}}$
adding the above from t = 1 to n we get
${\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}} <n + 1 - \frac{1}{n+1}$
as each term is greater than one we have
${\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}} > n $
as the value is between n and n + 1 so
$\left\lfloor{\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}}\right\rfloor = n $
 
kaliprasad said:
We have for t positive integer
$(1+x)^{t+1} > 1 + x(t+1)$
or $(1+x) > \sqrt[t+1]{1 + x(t+1)}$
putting $x = \frac{1}{t(t+1)}$ we get
$1+\frac{1}{t(t+1)} > \sqrt[t+1]{1 + \frac{1}{t}}$
or $1+\frac{1}{t(t+1)} > \sqrt[t+1]{\frac{t+1}{t}}$
or $1+\frac{1}{t} - \frac{1}{t+1} > \sqrt[t+1]{\frac{t+1}{t}}$
adding the above from t = 1 to n we get
${\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}} <n + 1 - \frac{1}{n+1}$
as each term is greater than one we have
${\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}} > n $
as the value is between n and n + 1 so
$\left\lfloor{\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}}\right\rfloor = n $

I privately told anemone that the answer was $n$, but I was told I must show my work. (Crying)
 
kaliprasad said:
We have for t positive integer
$(1+x)^{t+1} > 1 + x(t+1)$
or $(1+x) > \sqrt[t+1]{1 + x(t+1)}$
putting $x = \frac{1}{t(t+1)}$ we get
$1+\frac{1}{t(t+1)} > \sqrt[t+1]{1 + \frac{1}{t}}$
or $1+\frac{1}{t(t+1)} > \sqrt[t+1]{\frac{t+1}{t}}$
or $1+\frac{1}{t} - \frac{1}{t+1} > \sqrt[t+1]{\frac{t+1}{t}}$
adding the above from t = 1 to n we get
${\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}} <n + 1 - \frac{1}{n+1}$
as each term is greater than one we have
${\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}} > n $
as the value is between n and n + 1 so
$\left\lfloor{\sqrt[n+1]{\frac{n+1}{n}}+\sqrt[n]{\frac{n}{n-1}}+\cdots+\sqrt[4]{\frac{4}{3}}+\sqrt[3]{\frac{3}{2}}+\sqrt{2}}\right\rfloor = n $

Very well done, kaliprasad!(Cool)
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
1K
  • · Replies 41 ·
2
Replies
41
Views
6K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 34 ·
2
Replies
34
Views
5K