MHB Evaluating the Integral Using the Clausen Function

  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    Challenge Integral
DreamWeaver
Messages
297
Reaction score
0
Find a closed form evaluation for the following trigonometric integral, where the $$0 < \theta \le \pi/2$$:$$\int_0^{\theta}\frac{x^2}{\sin x} \, dx= \text{?}$$

Hint:

Consider

$$\int_0^{\theta} x\log \left(\tan \frac{x}{2} \right)\, dx$$

and then express this logtangent integral in terms of Clausen functions, by splitting logtan into logsin + logcos integrals...
 
Mathematics news on Phys.org
Hi all, this is my first post on Math Help Boards. :)

The answer to this problem is
$$\theta^2 \log \tan \frac{\theta}{2} -\frac{7}{2}\zeta(3)+4\theta \text{Cl}_2(\theta)-\theta \text{Cl}_2(2\theta)+4\text{Cl}_3(\theta)-\frac{1}{2}\text{Cl}_3(2\theta)$$

where $\text{Cl}_n(z)$ denotes the Clausen Function.

Proof:
Let $I$ denote our integral. On applying integration by parts we obtain

$$
I=\theta^2 \log \tan \frac{\theta}{2}-2\int_0^{\theta}x \log \tan \frac{x}{2}\; dx
$$

Now, we invoke the Fourier series of $\log \tan \frac{x}{2}$:

$$\log \tan \frac{x}{2}=-2 \sum_{n=1}^\infty \frac{\cos(2n-1)x}{2n-1}$$

It follows that

$$
\begin{align*}
I &= \theta^2 \log \tan \frac{\theta}{2}+4\sum_{n=1}^\infty \frac{1}{2n-1}\int_0^{\theta}x \cos(2n-1)x \; dx \\
&= \theta^2 \log \tan \frac{\theta}{2}+4\sum_{n=1}^\infty \frac{1}{2n-1}\left\{\theta \frac{\sin(2n-1)\theta}{2n-1}-\frac{1}{2n-1}\int_0^\theta \sin(2n-1)x dx\right\} \\
&= \theta^2 \log \tan \frac{\theta}{2}+4\sum_{n=1}^\infty \frac{1}{2n-1}\left\{\theta \frac{\sin(2n-1)\theta}{2n-1}+\frac{\cos(2n-1)\theta -1}{(2n-1)^2}\right\} \\
&= \theta^2 \log \tan \frac{\theta}{2} -\frac{7}{2}\zeta(3) +4\theta \sum_{n=1}^\infty \frac{\sin(2n-1)\theta}{(2n-1)^2}+4\sum_{n=1}^\infty \frac{\cos (2n-1)\theta}{(2n-1)^3} \\
&= \theta^2 \log \tan \frac{\theta}{2} -\frac{7}{2}\zeta(3)+4\theta \text{Cl}_2(\theta)-\theta \text{Cl}_2(2\theta)+4\text{Cl}_3(\theta)-\frac{1}{2}\text{Cl}_3(2\theta)
\end{align*}
$$

In the last step, I used

$$
\begin{align*}\sum_{n=1}^\infty \frac{\cos(2n-1)\theta}{(2n-1)^3} &=\text{Cl}_3(\theta)-\frac{1}{8}\text{Cl}_3(2\theta) \\
\sum_{n=1}^\infty \frac{\sin(2n-1)\theta}{(2n-1)^2}&=\text{Cl}_2(\theta)-\frac{1}{4}\text{Cl}_2(2\theta)
\end{align*}
$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top