Evaluating the Integral Using the Clausen Function

  • Context: MHB 
  • Thread starter Thread starter DreamWeaver
  • Start date Start date
  • Tags Tags
    Challenge Integral
Click For Summary
SUMMARY

The closed form evaluation of the integral $$\int_0^{\theta}\frac{x^2}{\sin x} \, dx$$ for $$0 < \theta \le \pi/2$$ is given by the expression $$\theta^2 \log \tan \frac{\theta}{2} -\frac{7}{2}\zeta(3)+4\theta \text{Cl}_2(\theta)-\theta \text{Cl}_2(2\theta)+4\text{Cl}_3(\theta)-\frac{1}{2}\text{Cl}_3(2\theta)$$. This result incorporates the Clausen functions $$\text{Cl}_n(z)$$ and the Riemann zeta function $$\zeta(3)$$, demonstrating a complex relationship between trigonometric integrals and special functions.

PREREQUISITES
  • Understanding of trigonometric integrals
  • Familiarity with the Clausen function $$\text{Cl}_n(z)$$
  • Knowledge of the Riemann zeta function $$\zeta(s)$$
  • Basic calculus concepts, particularly integration techniques
NEXT STEPS
  • Study the properties and applications of the Clausen function $$\text{Cl}_n(z)$$
  • Explore advanced integration techniques involving trigonometric functions
  • Learn about the Riemann zeta function $$\zeta(s)$$ and its significance in number theory
  • Investigate other special functions related to trigonometric integrals
USEFUL FOR

Mathematicians, students of advanced calculus, and anyone interested in the evaluation of complex integrals involving trigonometric functions and special functions.

DreamWeaver
Messages
297
Reaction score
0
Find a closed form evaluation for the following trigonometric integral, where the $$0 < \theta \le \pi/2$$:$$\int_0^{\theta}\frac{x^2}{\sin x} \, dx= \text{?}$$

Hint:

Consider

$$\int_0^{\theta} x\log \left(\tan \frac{x}{2} \right)\, dx$$

and then express this logtangent integral in terms of Clausen functions, by splitting logtan into logsin + logcos integrals...
 
Physics news on Phys.org
Hi all, this is my first post on Math Help Boards. :)

The answer to this problem is
$$\theta^2 \log \tan \frac{\theta}{2} -\frac{7}{2}\zeta(3)+4\theta \text{Cl}_2(\theta)-\theta \text{Cl}_2(2\theta)+4\text{Cl}_3(\theta)-\frac{1}{2}\text{Cl}_3(2\theta)$$

where $\text{Cl}_n(z)$ denotes the Clausen Function.

Proof:
Let $I$ denote our integral. On applying integration by parts we obtain

$$
I=\theta^2 \log \tan \frac{\theta}{2}-2\int_0^{\theta}x \log \tan \frac{x}{2}\; dx
$$

Now, we invoke the Fourier series of $\log \tan \frac{x}{2}$:

$$\log \tan \frac{x}{2}=-2 \sum_{n=1}^\infty \frac{\cos(2n-1)x}{2n-1}$$

It follows that

$$
\begin{align*}
I &= \theta^2 \log \tan \frac{\theta}{2}+4\sum_{n=1}^\infty \frac{1}{2n-1}\int_0^{\theta}x \cos(2n-1)x \; dx \\
&= \theta^2 \log \tan \frac{\theta}{2}+4\sum_{n=1}^\infty \frac{1}{2n-1}\left\{\theta \frac{\sin(2n-1)\theta}{2n-1}-\frac{1}{2n-1}\int_0^\theta \sin(2n-1)x dx\right\} \\
&= \theta^2 \log \tan \frac{\theta}{2}+4\sum_{n=1}^\infty \frac{1}{2n-1}\left\{\theta \frac{\sin(2n-1)\theta}{2n-1}+\frac{\cos(2n-1)\theta -1}{(2n-1)^2}\right\} \\
&= \theta^2 \log \tan \frac{\theta}{2} -\frac{7}{2}\zeta(3) +4\theta \sum_{n=1}^\infty \frac{\sin(2n-1)\theta}{(2n-1)^2}+4\sum_{n=1}^\infty \frac{\cos (2n-1)\theta}{(2n-1)^3} \\
&= \theta^2 \log \tan \frac{\theta}{2} -\frac{7}{2}\zeta(3)+4\theta \text{Cl}_2(\theta)-\theta \text{Cl}_2(2\theta)+4\text{Cl}_3(\theta)-\frac{1}{2}\text{Cl}_3(2\theta)
\end{align*}
$$

In the last step, I used

$$
\begin{align*}\sum_{n=1}^\infty \frac{\cos(2n-1)\theta}{(2n-1)^3} &=\text{Cl}_3(\theta)-\frac{1}{8}\text{Cl}_3(2\theta) \\
\sum_{n=1}^\infty \frac{\sin(2n-1)\theta}{(2n-1)^2}&=\text{Cl}_2(\theta)-\frac{1}{4}\text{Cl}_2(2\theta)
\end{align*}
$$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K