burgess said:
needed help to solve this math home work? Please help..
What is the value of log(i*pi/2) ?
I know the answer is "i*pi/2", but don't know the procedure to solve it. Please help me.
Thanks a lot in advance.
I tend to avoid the complex logarithm where possible...
$\displaystyle \begin{align*} z &= \log{ \left( \frac{\mathrm{i}\,\pi}{2} \right) } \\ \mathrm{e}^z &= \frac{\mathrm{i}\,\pi}{2} \\ \mathrm{e}^{x + \mathrm{i}\,y} &= \mathrm{i}\,\frac{\pi}{2} \textrm{ where } x, y \in \mathbf{R} \\ \mathrm{e}^x\cos{(y)} + \mathrm{i}\,\mathrm{e}^x\sin{(y)} &= 0 + \mathrm{i}\,\frac{\pi}{2} \\ \mathrm{e}^x\cos{(y)} = 0 \textrm{ and } \mathrm{e}^x\sin{(y)} &= \frac{\pi}{2} \end{align*}$
Solving the first equation we have:
$\displaystyle \begin{align*} \mathrm{e}^x\cos{(y)} &= 0 \\ \cos{(y)} &= 0 \textrm{ as } \mathrm{e}^x > 0\textrm{ for all real }x \\ y &= \frac{(2n + 1)\,\pi}{2} \textrm{ where } n \in \mathbf{Z} \end{align*}$
Substituting into the second equation gives
$\displaystyle \begin{align*} \mathrm{e}^x\sin{(y)} &= \frac{\pi}{2} \\ \mathrm{e}^x \sin{ \left[ \frac{ \left( 2n + 1 \right) \, \pi }{2} \right] } &= \frac{\pi}{2} \\ \mathrm{e}^x \left( -1 \right) ^n &= \frac{\pi}{2} \\ \mathrm{e}^x &= \frac{\pi}{2 \left( -1 \right) ^n } \end{align*}$
This will only be possible where n is even (as a real exponential function is always positive) , so that means we have to let $\displaystyle \begin{align*} n = 2m \textrm{ where } m \in \mathbf{Z} \end{align*}$ and we have
$\displaystyle \begin{align*} \mathrm{e}^x &= \frac{\pi}{2 \left( -1 \right) ^{2m} } \\ \mathrm{e}^x &= \frac{\pi}{2} \\ x &= \ln{ \left( \frac{\pi}{2} \right) } \end{align*}$
Thus $\displaystyle \begin{align*} z = x + \mathrm{i}\,y = \ln{ \left( \frac{\pi}{2} \right) } + \mathrm{i} \, \frac{ \left( 4m + 1 \right) \, \pi }{2} \end{align*}$So $\displaystyle \begin{align*} \log{ \left( \frac{\mathrm{i}\,\pi}{2} \right) } = \ln{ \left( \frac{\pi}{2} \right) } + \mathrm{i}\,\frac{ \left( 4m + 1 \right) \, \pi }{2} \end{align*}$.