Evaluating the remainder of a Taylor Series Polynomial

Click For Summary
SUMMARY

The discussion focuses on approximating the value of ln(2) using the Taylor polynomial pn(x) of the function f(x) = ln(x) centered at a = 1. The nth Taylor polynomial is expressed as Σ from n=1 to infinity of (-1)^(n+1)/n (x-1)^n. Participants evaluate the remainder Rn(2) = ln(2) - pn(2) to determine the necessary degree n for an accurate approximation of ln(2) to two decimal points. The conversation highlights the importance of understanding the Taylor series representation and the convergence behavior of the series.

PREREQUISITES
  • Taylor Series expansion
  • Understanding of logarithmic functions
  • Concept of remainder in Taylor series
  • Alternating series test
NEXT STEPS
  • Study Taylor Series convergence criteria
  • Learn how to calculate Taylor polynomial remainders
  • Explore error bounds for Taylor series approximations
  • Investigate the Alternating Series Test in detail
USEFUL FOR

Students studying calculus, particularly those focusing on series approximations, mathematicians interested in Taylor series, and educators teaching logarithmic functions and their approximations.

RJLiberator
Gold Member
Messages
1,094
Reaction score
63

Homework Statement


The goal of this problem is to approximate the value of ln 2. We will use two different approaches: (a) First, we use the Taylor polynomial pn(x) of the function f(x) = lnx centered at a = 1.

  1. Write the general expression for the nth Taylor polynomial pn(x) for f(x) = lnx centered at a = 1.
    DONE
  2. At x = 2, evaluate the size of the remainder Rn(2) = ln 2 − pn(2).
  3. What should n be so that you are sure that pn(2) approximates ln2 to two decimal

    points? What is then the approximate value of ln 2 (up to two decimal points)?

Homework Equations


[/B]

The Attempt at a Solution



For part 1, I netted the (should be correct) answer of
ln(x) = Σ from n=1 to infinity of (-1)^(n+1)/n (x-1)^n

Now, I am completely stuck on part 2. At x=2, evaluate the size of the remainder Rn(2) = ln(2)-Pn(2).

Are there any examples out there? I am searching the internet for examples, but not much luck.

Thank you.
 
Physics news on Phys.org
If you want to evaluate Rn(2), you calculate ln(2) - Pn(2). It's straightforward !

[edit] Correction. I looked at ln(2) - P2(2) which is too easy. Sorry.

[edit2] Check this link for an error bound expression.
 
Last edited:
  • Like
Likes   Reactions: RJLiberator
Thank you for the guidance.

I was starting to think it had something to do with the alternating series test.
When evaluating at x = 2 the (x-1)^n part of the summation does not matter.

I see from this link, ln(2) does not converge absolutely, but they have rearranged it in such a form with 1/2.
I guess, if I can figure out the answer to this part, then I have the value for ln(2). I will just need the value of Pn(2). Hm.
 
Maybe a better question now for me to ask is, what is the meaning/definition of Pn(2)? I know that P_2(x) is taking the sum to the second degree, but I don't understand Pn(2).
 
I would expect $$P_N(x) =\sum_{n=1}^N\ {(-1)^{(n+1)}\over n}\; (x-1)^n$$
 
Last edited:
  • Like
Likes   Reactions: RJLiberator
What does Pn(x) represent?

The nth degree polynomial representation at a value "x" ?

Wouldn't that be equivalent to evaluating ln(2) in this situation?
 
Okay, maybe I am looking at this wrong (well, clearly I am).

Let's say, I evaluate Pn(2) as you have prescribed in earlier post. (which can be done according to the Alternating series)
After this, I will need to find a way to evaluate Rn(2).
Once this is done, the combined values will equal = ln(2).

Is this the correct strategy to approaching this problem?
If so, how would I calculate Rn(2)
 
My impression is that Pn(x) is the Taylor series up to degree n. So P1(x) = x-1, P2(x) = (1-x) - (x-2)2/2, etc.

That way R1(2) = -0.31, R2(2) = 0.19 etc. (convergence is excruciatingly slow).

There is no calculating Rn(2) unless you 1) use the actual value of ln(2) , and 2) add up all the terms up to order n with unlimited precision. All there is to evaluate is to give an upper bound for |Rn|. The link gives an expression for the error bound

However, part 3) of the exercise then poses a problem: do they want us to actually calculate all these terms and check if it rounds off to 0.70 or 0.69 ? I really can't understand what's intended there.
 
  • Like
Likes   Reactions: RJLiberator
BvU, this homework was due last night. We came to the exact same conclusion. The vagueness of the question causes such confusion.

For ii) apparently they just wanted a general formula in the form of Rn(2) = ln(2) - sum (-1)^((n+1))n or something like this.
For iii) it was exactly as you stated.

I am just going to put this assignment behind me, at least I know that the vagueness of this assignment does not equate to my understanding on this topic. :) Thank you for helping.
 

Similar threads

  • · Replies 27 ·
Replies
27
Views
3K
Replies
6
Views
3K
Replies
18
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
5
Views
2K
Replies
5
Views
4K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K