MHB Evaluating Trigonometric Expression

AI Thread Summary
The discussion focuses on evaluating the expression tan² 20° + tan² 40° + tan² 80° without a calculator. A polynomial equation is derived, with roots corresponding to tan 20°, tan(-40°), and tan 80°, leading to a transformed equation for tan² values. The cubic equation x³ - 33x² + 27x - 3 = 0 is established, where the sum of the roots equals 33. This method provides a neat solution to the trigonometric expression. The approach highlights the relationship between trigonometric identities and polynomial equations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Without the use of a calculator, evaluate $$\tan^2 20^{\circ}+\tan^2 40^{\circ}+\tan^2 80^{\circ}$$.
 
Mathematics news on Phys.org
I won't cheat by repeating the solutions that I found here. But I previously found that there is also a neat answer for $\tan^210^\circ + \tan^250^\circ + \tan^270^\circ$, which can be found by the same methods.
 
anemone said:
Without the use of a calculator, evaluate $$\tan^2 20^{\circ}+\tan^2 40^{\circ}+\tan^2 80^{\circ}$$.

In the link provided by opalgs above

the roots of the equation t^3−3√3t^2−3t+√3=0

will be tan20,tan(−40)=−tan40,tan80

that is of f(t) =t^3−3√3t^2−3t+√3=0

and we shall construct an equation whose roots are
tan^2 20,tan^2 40 tan^2 80

shall be f(x^(1/2) = 0)

putting t = x^(1/2) we get

so x^(3/2) - 3√3x−3x^(1/2) +√3=0

or x^(3/2) - 3 x^(1/2) = 3√3x -√3
or
√x(x-3) = √3(3x -1)

square both sides to get

x(x-3)^3 = 3(3x-1)^2
or x(x^2-6x+ 9) = 3(9x^2 - 6x + 1)

or x^3 - 33 x^2 + 27x - 3 = 0

as it is cubic roots are tan^2 20,tan^2 40 tan^2 80
and sum of roots = - coefficent of x^2 or 33
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top