MHB Evaluating Trigonometric Expression

AI Thread Summary
The discussion focuses on evaluating the expression tan² 20° + tan² 40° + tan² 80° without a calculator. A polynomial equation is derived, with roots corresponding to tan 20°, tan(-40°), and tan 80°, leading to a transformed equation for tan² values. The cubic equation x³ - 33x² + 27x - 3 = 0 is established, where the sum of the roots equals 33. This method provides a neat solution to the trigonometric expression. The approach highlights the relationship between trigonometric identities and polynomial equations.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Without the use of a calculator, evaluate $$\tan^2 20^{\circ}+\tan^2 40^{\circ}+\tan^2 80^{\circ}$$.
 
Mathematics news on Phys.org
I won't cheat by repeating the solutions that I found here. But I previously found that there is also a neat answer for $\tan^210^\circ + \tan^250^\circ + \tan^270^\circ$, which can be found by the same methods.
 
anemone said:
Without the use of a calculator, evaluate $$\tan^2 20^{\circ}+\tan^2 40^{\circ}+\tan^2 80^{\circ}$$.

In the link provided by opalgs above

the roots of the equation t^3−3√3t^2−3t+√3=0

will be tan20,tan(−40)=−tan40,tan80

that is of f(t) =t^3−3√3t^2−3t+√3=0

and we shall construct an equation whose roots are
tan^2 20,tan^2 40 tan^2 80

shall be f(x^(1/2) = 0)

putting t = x^(1/2) we get

so x^(3/2) - 3√3x−3x^(1/2) +√3=0

or x^(3/2) - 3 x^(1/2) = 3√3x -√3
or
√x(x-3) = √3(3x -1)

square both sides to get

x(x-3)^3 = 3(3x-1)^2
or x(x^2-6x+ 9) = 3(9x^2 - 6x + 1)

or x^3 - 33 x^2 + 27x - 3 = 0

as it is cubic roots are tan^2 20,tan^2 40 tan^2 80
and sum of roots = - coefficent of x^2 or 33
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top