MHB Evaluating X/Y: A Series of Fractions

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Fractions Series
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $$X=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\cdots+\frac{1}{2011\cdot2012}$$ and $$Y=\frac{1}{1007\cdot2012}+\frac{1}{1008\cdot2011}+\cdots+\frac{1}{2012\cdot1007}$$.

Evaluate $$\frac{X}{Y}$$.
 
Mathematics news on Phys.org
My solution:

$$X=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\cdots+\frac{1}{2011\cdot2012}$$

$$\;\;\;=\sum_{n=1}^{1006} \left( \frac{1}{2n-1}-\frac{1}{2n} \right)$$

$$\;\;\;=\left( \frac{1}{1}-\frac{1}{2} \right)+\left( \frac{1}{3}-\frac{1}{4} \right)+\cdots+\left( \frac{1}{2011}-\frac{1}{2012} \right)$$

Okay, up to this point, we see $X$ and $Y$ aren't closely related so we need to begin to work on $Y$ to gain perspective to see how we should proceed to solve the problem.

$$Y=\frac{1}{1007\cdot2012}+\frac{1}{1008\cdot2011}+\cdots+\frac{1}{2012\cdot1007}$$

$$\;\;\;=\sum_{n=1}^{1006} \frac{1}{3019}\left( \frac{1}{n+1006}+\frac{1}{2013-n} \right)$$

$$\;\;\;=\frac{1}{3019} \sum_{n=1}^{1006} \left( \frac{1}{n+1006}+\frac{1}{2013-n} \right)$$

$$\;\;\;=\frac{1}{3019} \left( \left( \frac{1}{1007}+\frac{1}{2012} \right)+ \left( \frac{1}{1008}+\frac{1}{2012} \right)+\cdots+\left( \frac{1}{2012}+\frac{1}{1007} \right)\right)$$

$$\;\;\;=\frac{2}{3019} \left( \frac{1}{1007}+\frac{1}{1008}+\cdots+\frac{1}{2011}+\frac{1}{2012} \right)$$

Hey, now everything has become so obvious that

$$\left( \frac{1}{1007}+\frac{1}{1008}+\cdots+\frac{1}{2011}+\frac{1}{2012} \right)=\left( \frac{1}{1}-\frac{1}{2} \right)+\left( \frac{1}{3}-\frac{1}{4} \right)+\cdots+\left( \frac{1}{2011}-\frac{1}{2012} \right)$$

and therefore

$$Y=\frac{2X}{3019}$$

$$\frac{X}{Y}=\frac{3019}{2}$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top