MHB Evaluating X/Y: A Series of Fractions

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Fractions Series
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $$X=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\cdots+\frac{1}{2011\cdot2012}$$ and $$Y=\frac{1}{1007\cdot2012}+\frac{1}{1008\cdot2011}+\cdots+\frac{1}{2012\cdot1007}$$.

Evaluate $$\frac{X}{Y}$$.
 
Mathematics news on Phys.org
My solution:

$$X=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\cdots+\frac{1}{2011\cdot2012}$$

$$\;\;\;=\sum_{n=1}^{1006} \left( \frac{1}{2n-1}-\frac{1}{2n} \right)$$

$$\;\;\;=\left( \frac{1}{1}-\frac{1}{2} \right)+\left( \frac{1}{3}-\frac{1}{4} \right)+\cdots+\left( \frac{1}{2011}-\frac{1}{2012} \right)$$

Okay, up to this point, we see $X$ and $Y$ aren't closely related so we need to begin to work on $Y$ to gain perspective to see how we should proceed to solve the problem.

$$Y=\frac{1}{1007\cdot2012}+\frac{1}{1008\cdot2011}+\cdots+\frac{1}{2012\cdot1007}$$

$$\;\;\;=\sum_{n=1}^{1006} \frac{1}{3019}\left( \frac{1}{n+1006}+\frac{1}{2013-n} \right)$$

$$\;\;\;=\frac{1}{3019} \sum_{n=1}^{1006} \left( \frac{1}{n+1006}+\frac{1}{2013-n} \right)$$

$$\;\;\;=\frac{1}{3019} \left( \left( \frac{1}{1007}+\frac{1}{2012} \right)+ \left( \frac{1}{1008}+\frac{1}{2012} \right)+\cdots+\left( \frac{1}{2012}+\frac{1}{1007} \right)\right)$$

$$\;\;\;=\frac{2}{3019} \left( \frac{1}{1007}+\frac{1}{1008}+\cdots+\frac{1}{2011}+\frac{1}{2012} \right)$$

Hey, now everything has become so obvious that

$$\left( \frac{1}{1007}+\frac{1}{1008}+\cdots+\frac{1}{2011}+\frac{1}{2012} \right)=\left( \frac{1}{1}-\frac{1}{2} \right)+\left( \frac{1}{3}-\frac{1}{4} \right)+\cdots+\left( \frac{1}{2011}-\frac{1}{2012} \right)$$

and therefore

$$Y=\frac{2X}{3019}$$

$$\frac{X}{Y}=\frac{3019}{2}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Back
Top