MHB Evaluating X/Y: A Series of Fractions

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Fractions Series
Click For Summary
The discussion focuses on evaluating the ratio $$\frac{X}{Y}$$, where $$X$$ is defined as the sum of fractions from $$\frac{1}{1\cdot2}$$ to $$\frac{1}{2011\cdot2012}$$ and $$Y$$ as the sum of fractions from $$\frac{1}{1007\cdot2012}$$ to $$\frac{1}{2012\cdot1007}$$. Participants analyze the structure of both sums to simplify and compute the ratio. The evaluation involves recognizing patterns in the fractions and applying mathematical techniques for summation. Ultimately, the discussion aims to derive a clear numerical value for $$\frac{X}{Y}$$. The final result of the evaluation is sought after through collaborative problem-solving.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $$X=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\cdots+\frac{1}{2011\cdot2012}$$ and $$Y=\frac{1}{1007\cdot2012}+\frac{1}{1008\cdot2011}+\cdots+\frac{1}{2012\cdot1007}$$.

Evaluate $$\frac{X}{Y}$$.
 
Mathematics news on Phys.org
My solution:

$$X=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\cdots+\frac{1}{2011\cdot2012}$$

$$\;\;\;=\sum_{n=1}^{1006} \left( \frac{1}{2n-1}-\frac{1}{2n} \right)$$

$$\;\;\;=\left( \frac{1}{1}-\frac{1}{2} \right)+\left( \frac{1}{3}-\frac{1}{4} \right)+\cdots+\left( \frac{1}{2011}-\frac{1}{2012} \right)$$

Okay, up to this point, we see $X$ and $Y$ aren't closely related so we need to begin to work on $Y$ to gain perspective to see how we should proceed to solve the problem.

$$Y=\frac{1}{1007\cdot2012}+\frac{1}{1008\cdot2011}+\cdots+\frac{1}{2012\cdot1007}$$

$$\;\;\;=\sum_{n=1}^{1006} \frac{1}{3019}\left( \frac{1}{n+1006}+\frac{1}{2013-n} \right)$$

$$\;\;\;=\frac{1}{3019} \sum_{n=1}^{1006} \left( \frac{1}{n+1006}+\frac{1}{2013-n} \right)$$

$$\;\;\;=\frac{1}{3019} \left( \left( \frac{1}{1007}+\frac{1}{2012} \right)+ \left( \frac{1}{1008}+\frac{1}{2012} \right)+\cdots+\left( \frac{1}{2012}+\frac{1}{1007} \right)\right)$$

$$\;\;\;=\frac{2}{3019} \left( \frac{1}{1007}+\frac{1}{1008}+\cdots+\frac{1}{2011}+\frac{1}{2012} \right)$$

Hey, now everything has become so obvious that

$$\left( \frac{1}{1007}+\frac{1}{1008}+\cdots+\frac{1}{2011}+\frac{1}{2012} \right)=\left( \frac{1}{1}-\frac{1}{2} \right)+\left( \frac{1}{3}-\frac{1}{4} \right)+\cdots+\left( \frac{1}{2011}-\frac{1}{2012} \right)$$

and therefore

$$Y=\frac{2X}{3019}$$

$$\frac{X}{Y}=\frac{3019}{2}$$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 1 ·
Replies
1
Views
10K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 2 ·
Replies
2
Views
2K