Evaluating X/Y: A Series of Fractions

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Fractions Series
Click For Summary
SUMMARY

The discussion focuses on evaluating the ratio $$\frac{X}{Y}$$, where $$X$$ is defined as the sum of fractions $$\frac{1}{n(n+1)}$$ from $$n=1$$ to $$n=2011$$, and $$Y$$ is the sum of fractions $$\frac{1}{a(b)}$$ for specific pairs of integers from $$1007$$ to $$2012$$. The key conclusion is that the evaluation simplifies to a specific numerical value, which is derived through algebraic manipulation and series summation techniques. The final result of the ratio $$\frac{X}{Y}$$ is determined to be a straightforward fraction.

PREREQUISITES
  • Understanding of series summation techniques
  • Familiarity with algebraic manipulation of fractions
  • Knowledge of the properties of telescoping series
  • Basic skills in evaluating limits and convergence
NEXT STEPS
  • Study telescoping series and their applications in calculus
  • Explore advanced fraction manipulation techniques
  • Learn about convergence tests for infinite series
  • Investigate the use of partial fractions in algebra
USEFUL FOR

Mathematics students, educators, and anyone interested in advanced algebraic techniques and series evaluation.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $$X=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\cdots+\frac{1}{2011\cdot2012}$$ and $$Y=\frac{1}{1007\cdot2012}+\frac{1}{1008\cdot2011}+\cdots+\frac{1}{2012\cdot1007}$$.

Evaluate $$\frac{X}{Y}$$.
 
Physics news on Phys.org
My solution:

$$X=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\cdots+\frac{1}{2011\cdot2012}$$

$$\;\;\;=\sum_{n=1}^{1006} \left( \frac{1}{2n-1}-\frac{1}{2n} \right)$$

$$\;\;\;=\left( \frac{1}{1}-\frac{1}{2} \right)+\left( \frac{1}{3}-\frac{1}{4} \right)+\cdots+\left( \frac{1}{2011}-\frac{1}{2012} \right)$$

Okay, up to this point, we see $X$ and $Y$ aren't closely related so we need to begin to work on $Y$ to gain perspective to see how we should proceed to solve the problem.

$$Y=\frac{1}{1007\cdot2012}+\frac{1}{1008\cdot2011}+\cdots+\frac{1}{2012\cdot1007}$$

$$\;\;\;=\sum_{n=1}^{1006} \frac{1}{3019}\left( \frac{1}{n+1006}+\frac{1}{2013-n} \right)$$

$$\;\;\;=\frac{1}{3019} \sum_{n=1}^{1006} \left( \frac{1}{n+1006}+\frac{1}{2013-n} \right)$$

$$\;\;\;=\frac{1}{3019} \left( \left( \frac{1}{1007}+\frac{1}{2012} \right)+ \left( \frac{1}{1008}+\frac{1}{2012} \right)+\cdots+\left( \frac{1}{2012}+\frac{1}{1007} \right)\right)$$

$$\;\;\;=\frac{2}{3019} \left( \frac{1}{1007}+\frac{1}{1008}+\cdots+\frac{1}{2011}+\frac{1}{2012} \right)$$

Hey, now everything has become so obvious that

$$\left( \frac{1}{1007}+\frac{1}{1008}+\cdots+\frac{1}{2011}+\frac{1}{2012} \right)=\left( \frac{1}{1}-\frac{1}{2} \right)+\left( \frac{1}{3}-\frac{1}{4} \right)+\cdots+\left( \frac{1}{2011}-\frac{1}{2012} \right)$$

and therefore

$$Y=\frac{2X}{3019}$$

$$\frac{X}{Y}=\frac{3019}{2}$$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
11K
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 2 ·
Replies
2
Views
2K