Noah1
- 21
- 0
MarkFL said:To find the intersection(s) in the given interval, we may write:
$$\sin(x)=\cos(x)$$
Now, observing that $$\cos\left(\frac{\pi}{2}\right)=\cos\left(\frac{3\pi}{2}\right)=0$$ and:
$$\cos\left(\frac{\pi}{2}\right)\ne\sin\left(\frac{\pi}{2}\right)$$
$$\cos\left(\frac{3\pi}{2}\right)\ne\sin\left(\frac{3\pi}{2}\right)$$
We may then divide though by $\cos(x)$ without losing any solutions on the given interval to get:
$$\tan(x)=1$$
And, given the periodicity of the tangent function and the quadrant I solution of $$x=\frac{\pi}{4}$$, we may give the general solution as:
$$x=\frac{\pi}{4}+k\pi=\frac{\pi}{4}(4k+1)$$ where $k\in\mathbb{Z}$
Now, along with the given interval and what we found at the endpoints, we may write:
$$\frac{\pi}{2}<\frac{\pi}{4}(4k+1)<\frac{3\pi}{2}$$
$$2<4k+1<6$$
$$1<4k<5$$
$$\frac{1}{4}<k<\frac{5}{4}$$
Hence (given that $k$ is an integer):
$k=1$
And so the intersection of the two functions occurs for:
$$x=\frac{\pi}{4}(4(1)+1)=\frac{5\pi}{4}$$
Now, observing that:
$$\sin\left(\frac{\pi}{2}\right)>\cos\left(\frac{\pi}{2}\right)$$
$$\sin\left(\frac{3\pi}{2}\right)<\cos\left(\frac{3\pi}{2}\right)$$
We may conclude:
$$\sin(x)>\cos(x)$$ on $$\left[\frac{\pi}{2},\frac{5\pi}{4}\right)$$
$$\cos(x)>\sin(x)$$ on $$\left(\frac{5\pi}{4},\frac{3\pi}{2}\right]$$
And so the area $A$ in question will be given by:
$$A=\int_{\frac{\pi}{2}}^{\frac{5\pi}{4}} \sin(x)-\cos(x)\,dx+\int_{\frac{5\pi}{4}}^{\frac{3\pi}{2}} \cos(x)-\sin(x)\,dx=(1+\sqrt{2})+(\sqrt{2}-1)=2\sqrt{2}$$
Is this question correct? We are given to evaluate:
$$\int_0^2 \left(e^x-e^{-x}\right)^2\,dx$$
$$2\left(\frac{1}{2}\sinh(x)-x\right)$$
$$2\left(\frac{1}{2}\sinh(2\cdot2)-2\right)-2\left(\frac{1}{2}\sinh(2\cdot0)-0\right)$$
$$\sinh(4)-4$$