Graduate Even with a whimsical mathematical usage, solutions are obtained!

Z-10-46
Messages
1
Reaction score
0
TL;DR
Even with a whimsical mathematical usage, coherent solutions are obtained!
Hello everyone,
logcomplexe 1.JPG

logcomplexe 2.JPG

Here, we observe that the familiar properties of the real logarithm hold true for the complex logarithm in these examples.

So why does a whimsical mathematical use of real logarithm properties yield coherent solutions even in the case of complex logarithm?
 

Attachments

  • Vitesse de la lumiere 1.JPG
    Vitesse de la lumiere 1.JPG
    55.9 KB · Views: 136
Physics news on Phys.org
As long as you are dealing with analytic functions, the real function is just a restriction of the complex analytic function. Two analytic functions can only be identical on the real line if they are identical.
 
  • Like
Likes PeroK and fresh_42
FactChecker said:
As long as you are dealing with analytic functions, the real function is just a restriction of the complex analytic function. Two analytic functions can only be identical on the real line if they are identical.
The term analytical is very interesting. It is reserved for functions that have an expression as a series. And that was how mathematicians regarded all functions for a long time, as series.
 
fresh_42 said:
The term analytical is very interesting. It is reserved for functions that have an expression as a series. And that was how mathematicians regarded all functions for a long time, as series.
When I studied complex analysis, "analytical" and "holomorphic" were assumed to mean more or less the same thing.
 
Svein said:
When I studied complex analysis, "analytical" and "holomorphic" were assumed to mean more or less the same thing.
Isn't that still the case?
 
fresh_42 said:
Isn't that still the case?
I certainly hope so. But the definition used to be "functions that satisfy the Cauchy-Riemann equations".
 
  • Like
Likes FactChecker
As shown by this animation, the fibers of the Hopf fibration of the 3-sphere are circles (click on a point on the sphere to visualize the associated fiber). As far as I understand, they never intersect and their union is the 3-sphere itself. I'd be sure whether the circles in the animation are given by stereographic projection of the 3-sphere from a point, say the "equivalent" of the ##S^2## north-pole. Assuming the viewpoint of 3-sphere defined by its embedding in ##\mathbb C^2## as...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K