A Even with a whimsical mathematical usage, solutions are obtained!

AI Thread Summary
The discussion highlights the coherence of solutions derived from whimsical applications of real logarithm properties to complex logarithms, emphasizing that these properties hold true for analytic functions. It asserts that a real function is essentially a restriction of its complex counterpart, and two analytic functions can only be identical on the real line if they are identical overall. The term "analytical" is explored, noting its historical association with functions expressible as series. The conversation also touches on the equivalence of "analytical" and "holomorphic" in complex analysis, referencing the Cauchy-Riemann equations as a foundational definition. Overall, the thread underscores the interconnectedness of real and complex analysis in mathematical functions.
Z-10-46
Messages
1
Reaction score
0
TL;DR Summary
Even with a whimsical mathematical usage, coherent solutions are obtained!
Hello everyone,
logcomplexe 1.JPG

logcomplexe 2.JPG

Here, we observe that the familiar properties of the real logarithm hold true for the complex logarithm in these examples.

So why does a whimsical mathematical use of real logarithm properties yield coherent solutions even in the case of complex logarithm?
 

Attachments

  • Vitesse de la lumiere 1.JPG
    Vitesse de la lumiere 1.JPG
    55.9 KB · Views: 125
Mathematics news on Phys.org
As long as you are dealing with analytic functions, the real function is just a restriction of the complex analytic function. Two analytic functions can only be identical on the real line if they are identical.
 
  • Like
Likes PeroK and fresh_42
FactChecker said:
As long as you are dealing with analytic functions, the real function is just a restriction of the complex analytic function. Two analytic functions can only be identical on the real line if they are identical.
The term analytical is very interesting. It is reserved for functions that have an expression as a series. And that was how mathematicians regarded all functions for a long time, as series.
 
fresh_42 said:
The term analytical is very interesting. It is reserved for functions that have an expression as a series. And that was how mathematicians regarded all functions for a long time, as series.
When I studied complex analysis, "analytical" and "holomorphic" were assumed to mean more or less the same thing.
 
Svein said:
When I studied complex analysis, "analytical" and "holomorphic" were assumed to mean more or less the same thing.
Isn't that still the case?
 
fresh_42 said:
Isn't that still the case?
I certainly hope so. But the definition used to be "functions that satisfy the Cauchy-Riemann equations".
 
  • Like
Likes FactChecker
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top