Every Closed Set in R has a Countable Dense Subset

  • Context: MHB 
  • Thread starter Thread starter joypav
  • Start date Start date
  • Tags Tags
    Closed Set
Click For Summary
SUMMARY

Every closed set in R has a countable dense subset, which can be established by demonstrating that such sets are separable. The discussion outlines that if a closed set E is bounded, it is compact, allowing the use of finite subcovers to construct a countable dense subset. Specifically, the set C, formed by the union of centers of balls from finite subcovers, is shown to be both countable and dense in E. For unbounded closed sets, the approach involves expressing E as a union of compact subsets.

PREREQUISITES
  • Understanding of closed sets in topology
  • Familiarity with compactness and separability in metric spaces
  • Knowledge of open covers and finite subcovers
  • Basic concepts of Cauchy sequences and convergence in R
NEXT STEPS
  • Study the properties of compact sets in metric spaces
  • Learn about the construction of dense subsets in various topological spaces
  • Explore the concept of separability and its implications in analysis
  • Investigate the relationship between closed sets and Cauchy sequences in R
USEFUL FOR

Mathematicians, students of real analysis, and anyone interested in topology and the properties of closed sets in metric spaces will benefit from this discussion.

joypav
Messages
149
Reaction score
0
Show that every closed set in R has a countable dense subset.
Let's call the set F.

I've been thinking about this problem for a little bit, and it just doesn't seem like I have enough initial information!
I tried listing some things that I know about closed sets in R:

$\cdot$ Countable dense subset is the same as being separable (I think?)
$\cdot$ F contains all of it's limit points
$\cdot$ Every cauchy sequence in F converges to a point in F
$\cdot$ If F is closed then F is $G_\delta$, a countable intersection of open sets (I thought this may be helpful because the sets are countable?)

I considered somehow utilizing the rational numbers, because they are dense in R, and for each x in F having a sequence of rational numbers that converges to x. However, this was just an idea.

Obviously I haven't done much concrete work on it. But I would appreciate a push in the right direction!
 
Physics news on Phys.org
Hi joypav,

First consider the case when $E$ is bounded. Then $E$ is compact. Can you prove in this case, that $E$ is separable (i.e., has a countable dense subset)?
 
Euge said:
Hi joypav,

First consider the case when $E$ is bounded. Then $E$ is compact. Can you prove in this case, that $E$ is separable (i.e., has a countable dense subset)?

If E is compact, then every open cover has a finite subcover. Then, basically, you can have a union of the center of each "ball" of your finite subcover. (by shrinking the radius) And that would be a dense and countable subset.
 
Not quite. Just one finite subcover will not give density. But for each $n\in \Bbb N$, we may consider finitely many centers of balls of radius $1/n$ covering $E$ (which forms a finite $1/n$-net), and let $A$ be the union of all these centers. Then we can show that $A$ is dense in $E$. Being the countable union of finite sets, $A$ is countable.
 
Here we go...

Let $E \subset R$, E closed.
Assume E is bounded $\implies$ E is compact $\implies$ every open cover of E has a finite subcover.
Consider the open cover,

$E \subset \cup_{x \in E}B(x,1/n)$, for $n \in \Bbb{N}$

Then there exists a finite subcover, for some $N \geq 1$,

$E \subset \cup^{N}_{i=1}B(x_i,1/n) \subset \cup_{x \in E}B(x,1/n) $

Define $C_n = $ the set of all centers of $B(x_i,1/n)$, $1\leq i \leq N = x_1 , x_2 , ... , x_N $

Create this set for every $n \in \Bbb{N}$.
Meaning,
$E \subset \cup^{N_1}_{i=1}B(x_i,1) \subset \cup_{x \in E}B(x,1) $, $C_1 = x_1, x_2, ... , x_{N_1} $
$E \subset \cup^{N_2}_{i=1}B(x_i,1/2) \subset \cup_{x \in E}B(x,1/2) $, $C_2 = x_1, x_2, ... , x_{N_2} $
... and so on for $C_3, C_4, ...$

Let $C = \cup_{n \in \Bbb{N}} C_n$.

Claim: C is our countable dense subset of E.
1. C is countable.
$\forall n \in \Bbb{N}, C_n \subset \cup^{N_n}_{i=1}B(x_i,1/n) $ and a subset of a countable set is countable
$\implies \forall n \in \Bbb{N}, C_n $ is countable.
$C = \cup_{n \in \Bbb{N}} C_n$, a countable union of countable sets $\implies$ C is countable.

2. C is dense in E.
Take $x \in E$. Given $\epsilon > 0$, $\exists n \in \Bbb{N}$ such that $1/n < \epsilon$.
Then, $\exists y \in C_n \subset C$ so that $x \in B(y, 1/n) \implies y \in B(x,1/n) \subset B(x,\epsilon)$
So $y \in B(x,\epsilon) \cap C \implies $ C is dense in E.

How's that look?
 
It looks better, but it could be improved by writing the following:

If $E$ is bounded, then $E$ is compact. Thus, for every $n\in \Bbb N$, there is a finite $1/n$-net $C_n$. If $C = \bigcup C_n$, then $C$ is countable, being the countable union of finite sets. Further, if $\epsilon > 0$ and $x\in E$, we may choose an $n\in \Bbb N$ such that $1/n < \epsilon$, and select $y\in C_n$ such that $d(x,y) < 1/n$. Then $d(x,y) < \epsilon$, showing that $x\in \bar{C}$. Hence, $C$ is dense in $E$.
 
Then if we want to show the same for an unbounded close set, it just seems like I don't have enough info to use?
 
There is enough info. In the general case, write $E$ as the union of sets $E_n := E\cap [-n,n]$ for $n = 1,2,3,\ldots$, and note each $E_n$, being a closed subspace of the compact interval $[-n,n]$, is compact, hence separable. See what you can do from there.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 44 ·
2
Replies
44
Views
7K
  • · Replies 1 ·
Replies
1
Views
2K