MHB Example on Triangular Rings - Lam, Example 1.14

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Example Rings
Click For Summary
The discussion revolves around clarifying Example 1.14 from T. Y. Lam's "A First Course in Noncommutative Rings," specifically the results in Table 1.16. Participants are trying to understand how the multiplication of elements from the bimodule M and the ring R results in zero, as indicated by the equation mr = 0. There is confusion regarding the interpretation of M and R as sets versus matrices, with one participant emphasizing the need for clarity on matrix multiplication in this context. The conversation highlights the necessity of understanding the structure of the matrices and the relationships between the elements in the context of bimodules. Overall, the thread seeks to resolve the mathematical intricacies presented in the example and table.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading T. Y. Lam's book, "A First Course in Noncommutative Rings" (Second Edition) and am currently focussed on Section 1:Basic Terminology and Examples ...

I need help with an aspect of Example 1.14 ... ...

Example 1.14 reads as follows: https://www.physicsforums.com/attachments/5984
https://www.physicsforums.com/attachments/5985I cannot follow why the results in Table 1.16 follow ...

For example, according to Table 1.16 ...

$$mr = 0$$ for all $$m \in M$$ and $$r \in R$$ ... but why

Similarly I don't follow the other entries in the Table ...

Can someone please help ...

Peter
 
Physics news on Phys.org
We have:

$\begin{pmatrix}0&m\\0&0\end{pmatrix}\begin{pmatrix}r&0\\0&0\end{pmatrix} = \begin{pmatrix}0&0\\0&0\end{pmatrix}$
 
Deveno said:
We have:

$\begin{pmatrix}0&m\\0&0\end{pmatrix}\begin{pmatrix}r&0\\0&0\end{pmatrix} = \begin{pmatrix}0&0\\0&0\end{pmatrix}$
Hi Deveno,

Thanks for the help ... but I do not follow you ...

We have $$A = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$$

where I have been thinking that $$M$$ and $$R$$ are a set of elements (actually a bimodule and left $$R$$-module) that we select elements from ... and then multiply ... that is, M and R are sets not actually matrices themselves ...

... ... BUT ... you seem to have interpreted $$M$$ and $$R$$ as matrices ... so you select $$m$$ from $$M$$ and $$r$$ from $$R$$ and write:

$$mr = \begin{pmatrix} 0 & m \\ 0 & 0 \end{pmatrix} \begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$ ...

I do not understand how $$MR$$ in the table becomes a matrix multiplication ...Can you please clarify ...?

Peter
 
Peter said:
Hi Deveno,

Thanks for the help ... but I do not follow you ...

We have $$A = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$$

where I have been thinking that $$M$$ and $$R$$ are a set of elements (actually a bimodule and left $$R$$-module) that we select elements from ... and then multiply ... that is, M and R are sets not actually matrices themselves ...

... ... BUT ... you seem to have interpreted $$M$$ and $$R$$ as matrices ... so you select $$m$$ from $$M$$ and $$r$$ from $$R$$ and write:

$$mr = \begin{pmatrix} 0 & m \\ 0 & 0 \end{pmatrix} \begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$ ...

I do not understand how $$MR$$ in the table becomes a matrix multiplication ...Can you please clarify ...?

Peter

$R$ is a ring, $S$ is a ring, and $M$ is an $(R,S)$-bimodule. A typical element of $A$ is:

$\begin{pmatrix}r&m\\0&s\end{pmatrix}$ with $r\in R, m\in M$, and $s\in S$.

We have an isomorphism (of abelian groups): $A \to R \oplus M \oplus S$ given by:

$\begin{pmatrix}r&m\\0&s\end{pmatrix} \mapsto (r,m,s)$.

We can thus regard our matrices as $\Bbb Z$-linear combinations of $(r,0,0),(0,m,0)$ and $(0,0,s)$ or equivalently as $\Bbb Z$-linear combinations of the matrices:

$\begin{pmatrix}r&0\\0&0\end{pmatrix}, \begin{pmatrix}0&m\\0&0\end{pmatrix}, \begin{pmatrix}0&0\\0&s\end{pmatrix}$

Formally, then, using the distributive law of matrices, we have:

$(r,m,s)(r',m',s') = [(r,0,0) + (0,m,0) + (0,0,s)][(r',0,0) + (0,m'0) + (0,0,s')]$

$=(r,0,0)(r',0,0) + (r,0,0)(0,m',0) + (r,0,0)(0,0,s') + (0,m,0)(r',0,0) + (0,m,0)(0,m',0) + (0,m,0)(0,0,s') + (0,0,s)(r',0,0) + (0,0,s)(0,m',0) + (0,0,s)(0,0,s')$

so in order to completely determine the multiplication in $A$, we need to know what these 9 terms are. The 3x3 table is a mnemonic SCHEMATIC, to remember which abelian subgroup ($R,M$ or $S$) each term is.

Note that the $1,2$ entry in the matrix is: $rm' + ms'$, which is in $M$ since $M$ is an $(R,S)$-bimodule.

That is, $RM \subseteq M$, and $MS \subseteq M$, as (left or right) scalar product sets; for example:

$RM = \{rm\mid r\in R, M \in M\} \subseteq M$, since $M$ is a (left) $R$-module.
 
Deveno said:
$R$ is a ring, $S$ is a ring, and $M$ is an $(R,S)$-bimodule. A typical element of $A$ is:

$\begin{pmatrix}r&m\\0&s\end{pmatrix}$ with $r\in R, m\in M$, and $s\in S$.

We have an isomorphism (of abelian groups): $A \to R \oplus M \oplus S$ given by:

$\begin{pmatrix}r&m\\0&s\end{pmatrix} \mapsto (r,m,s)$.

We can thus regard our matrices as $\Bbb Z$-linear combinations of $(r,0,0),(0,m,0)$ and $(0,0,s)$ or equivalently as $\Bbb Z$-linear combinations of the matrices:

$\begin{pmatrix}r&0\\0&0\end{pmatrix}, \begin{pmatrix}0&m\\0&0\end{pmatrix}, \begin{pmatrix}0&0\\0&s\end{pmatrix}$

Formally, then, using the distributive law of matrices, we have:

$(r,m,s)(r',m',s') = [(r,0,0) + (0,m,0) + (0,0,s)][(r',0,0) + (0,m'0) + (0,0,s')]$

$=(r,0,0)(r',0,0) + (r,0,0)(0,m',0) + (r,0,0)(0,0,s') + (0,m,0)(r',0,0) + (0,m,0)(0,m',0) + (0,m,0)(0,0,s') + (0,0,s)(r',0,0) + (0,0,s)(0,m',0) + (0,0,s)(0,0,s')$

so in order to completely determine the multiplication in $A$, we need to know what these 9 terms are. The 3x3 table is a mnemonic SCHEMATIC, to remember which abelian subgroup ($R,M$ or $S$) each term is.

Note that the $1,2$ entry in the matrix is: $rm' + ms'$, which is in $M$ since $M$ is an $(R,S)$-bimodule.

That is, $RM \subseteq M$, and $MS \subseteq M$, as (left or right) scalar product sets; for example:

$RM = \{rm\mid r\in R, M \in M\} \subseteq M$, since $M$ is a (left) $R$-module.
Thanks for for the help, Deveno ...

Just working through your post and reflecting on what you have said ...

Thanks again ...

Peter
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
3
Views
2K
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K