MHB Example on Z-modules .... Dummit & Foote, Page 339 ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Example
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Dummit and Foote's book: "Abstract Algebra" (Third Edition) ...

I am currently studying Chapter 10: Introduction to Module Theory ... ...

I need some help with an aspect of Dummit and Foote's example on Z-modules in Section 10.1 Basic Definitions and Examples ... ... Dummit and Foote's example on Z-modules reads as follows:
https://www.physicsforums.com/attachments/8001In the above example we read the following:

" ... ... This definition of an action on the integers on $$A$$ makes $$A$$ into a $$\mathbb{Z}$$-module, and the module axioms show that this is the only possible action of $$\mathbb{Z}$$ on $$A$$ making it a (unital) $$\mathbb{Z}$$-module ... ... "Can someone please explain how/why the module axioms demonstrate that this is the only possible action of $$\mathbb{Z}$$ on $$A$$ making it a (unital) $$\mathbb{Z}$$-module ... ... ? How do we know it is the only possible such action ... ... ?Hope someone can help ...

Peter
 
Physics news on Phys.org
If $n>0$ then $n = 1+1+\ldots + 1$ (property of $\Bbb{Z}$). Therefore $$na = (1+1+\ldots + 1)a = 1a + 1a + \ldots + 1a = a+a+\ldots + a,$$ using the module axioms. So that is the only possible value for $na$.The cases $n=0$ and $n<0$ work in a similar way, starting from the facts that $0 = 1 + (-1)$ and $-n = (-1)n$.
 
Thread 'Determine whether ##125## is a unit in ##\mathbb{Z_471}##'
This is the question, I understand the concept, in ##\mathbb{Z_n}## an element is a is a unit if and only if gcd( a,n) =1. My understanding of backwards substitution, ... i have using Euclidean algorithm, ##471 = 3⋅121 + 108## ##121 = 1⋅108 + 13## ##108 =8⋅13+4## ##13=3⋅4+1## ##4=4⋅1+0## using back-substitution, ##1=13-3⋅4## ##=(121-1⋅108)-3(108-8⋅13)## ... ##= 121-(471-3⋅121)-3⋅471+9⋅121+24⋅121-24(471-3⋅121## ##=121-471+3⋅121-3⋅471+9⋅121+24⋅121-24⋅471+72⋅121##...
Back
Top