MHB Example on Z-modules .... Dummit & Foote, Page 339 ....

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Example
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Dummit and Foote's book: "Abstract Algebra" (Third Edition) ...

I am currently studying Chapter 10: Introduction to Module Theory ... ...

I need some help with an aspect of Dummit and Foote's example on Z-modules in Section 10.1 Basic Definitions and Examples ... ... Dummit and Foote's example on Z-modules reads as follows:
https://www.physicsforums.com/attachments/8001In the above example we read the following:

" ... ... This definition of an action on the integers on $$A$$ makes $$A$$ into a $$\mathbb{Z}$$-module, and the module axioms show that this is the only possible action of $$\mathbb{Z}$$ on $$A$$ making it a (unital) $$\mathbb{Z}$$-module ... ... "Can someone please explain how/why the module axioms demonstrate that this is the only possible action of $$\mathbb{Z}$$ on $$A$$ making it a (unital) $$\mathbb{Z}$$-module ... ... ? How do we know it is the only possible such action ... ... ?Hope someone can help ...

Peter
 
Physics news on Phys.org
If $n>0$ then $n = 1+1+\ldots + 1$ (property of $\Bbb{Z}$). Therefore $$na = (1+1+\ldots + 1)a = 1a + 1a + \ldots + 1a = a+a+\ldots + a,$$ using the module axioms. So that is the only possible value for $na$.The cases $n=0$ and $n<0$ work in a similar way, starting from the facts that $0 = 1 + (-1)$ and $-n = (-1)n$.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top