How do you show that the exponential function is its own derivative by using the fact that E(x)E(y)=E(x+y). Don't assume the derivative exists either. You can use any other property of E(x) that you can think of, but you are supposed to use the fact above primarily.(adsbygoogle = window.adsbygoogle || []).push({});

(that is, without using the obvious power series expansion argument)

I think it must be something so obvious that I am missing it altogether! Thanks for the help.

Oh, and while you're at it, how would I then show that E(x) is convex?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Exp(x) is its own derivative (proven axiomatically)

Loading...

Similar Threads for derivative proven axiomatically |
---|

I How to derive this log related integration formula? |

B When do we use which notation for Delta and Differentiation? |

I Derivative of Euler's formula |

I Partial derivatives in thermodynamics |

I Deriving a function from within an integral with a known solution |

**Physics Forums | Science Articles, Homework Help, Discussion**