MHB Expanding and simplifying brackets

Click For Summary
The discussion focuses on the steps to simplify and expand the expression involving brackets, specifically the equation $4d^2R^2 - (d^2-r^2+R^2)^2$. The user seeks guidance on obtaining four brackets from this expression, utilizing the difference of squares method. Key transformations include expressing the equation as $(2dR)^2 - (d^2-r^2+R^2)^2$ and factoring it into two products. The process involves multiple steps of factoring and rearranging terms, ultimately leading to a final expression of four distinct factors. The user expresses gratitude for assistance in this mathematical endeavor.
Maggie_s2020
Messages
2
Reaction score
0
Hello, I have been trying to solve the top line equation to get the result (the bottom line). I am searching for a clue (the steps) on how to obtain those four brackets as a result.
Screenshot 2020-12-06 at 16.41.07.png
 
Last edited by a moderator:
Mathematics news on Phys.org
factoring the expression within the radical just involves the difference of squares ...

$4d^2R^2 - (d^2-r^2+R^2)^2$

$(2dR)^2 - (d^2-r^2+R^2)^2$

$[2dR -(d^2-r^2+R^2)] \cdot [2dR + (d^2-r^2+R^2)]$

$[-(d^2-2dR+R^2) + r^2] \cdot [(d^2+2dR+R^2) - r^2]$

$[r^2-(d-R)^2] \cdot [(d+R)^2 - r^2]$

$[(r-d+R)(r+d-R)] \cdot [(d+R-r)(d+R+r)]$

multiply the two middle factors by (-1) ...

$(-d+r+R)(-d-r+R)(-d+r-R)(d+r+R)$
 
Last edited by a moderator:
skeeter said:
factoring the expression within the radical just involves the difference of squares ...

$4d^2R^2 - (d^2-r^2+R^2)$

$(2dR)^2 - (d^2-r^2+R^2)^2$

$[2dR -(d^2-r^2+R^2)] \cdot [2dR + (d^2-r^2+R^2)]$

$[-(d^2-2dR+R^2) + r^2] \cdot [(d^2+2dR+R^2) - r^2]$

$[r^2-(d-R)^2] \cdot [(d+R)^2 - r^2]$

$[(r-d+R)(r+d-R)] \cdot [(d+R-r)(d+R+r)]$

multiply the two middle factors by (-1) ...

$(-d+r+R)(-d-r+R)(-d+r-R)(d+r+R)$
THANK YOU SO SO SO MUCH! BLESS YOU!
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 18 ·
Replies
18
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 16 ·
Replies
16
Views
5K
  • · Replies 23 ·
Replies
23
Views
2K