Expanding potential in Legendre polynomials (or spherical harmonics)

rnielsen25
Messages
25
Reaction score
1
Homework Statement
Expand $$\frac{1}{\sqrt{ (\boldsymbol{r-r'})^2+a} }$$ in legendre polynomials.
Relevant Equations
$$ \sum_{n=0}^{\infty} P_{n}(x) t^{n}=\frac{1}{\sqrt{1-2 x t+t^{2}}} $$
Using the generating function for the legendre polynomial: $$ \sum_{n=0}^{\infty} P_{n}(x) t^{n}=\frac{1}{\sqrt{1-2 x t+t^{2}}} $$ It's possible to expand the coulomb potential in a basis of legendre polynomials (or even spherical harmonic ) like this: $$ \begin{aligned} &\frac{1}{\left.\mid \vec{r}-\vec{r}^{\prime}\right]}=\frac{1}{\sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime}\left(\hat{r} \cdot \hat{r}^{\prime}\right)}}= \sum_{\ell=0}^{\infty} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} P\left(\hat{r} \cdot \hat{r}^{\prime}\right) \\ &=\sum_{\ell=0}^{\infty} \frac{4 \pi}{2 \ell+1} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} \sum_{m=-\ell}^{\ell} Y_{\ell m}^{\star}\left(\vartheta^{\prime}, \varphi^{\prime}\right) Y_{\ell m}(\vartheta, \varphi) \end{aligned} $$ Where ##r_{<}## and ##r_{>}## represent the smaller and larger of ##r## and ##r^{\prime}##.

But I need to expand
$$\frac{1}{\sqrt{ (\boldsymbol{r-r'})^2+a} }=\frac{1}{\sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime}\left(\hat{r} \cdot \hat{r}^{\prime}\right)+a}}$$
in a similar way. However, I can't seem to pull out a factor of ##r## or ##r'## to get the generating function as you can above, because of the addition of ##a##.
So how do I expand this expression in legendre polynomials?
 
Physics news on Phys.org
Nicklas said:
But I need to expand
$$\frac{1}{\sqrt{ (\boldsymbol{r-r'})^2+a} }=\frac{1}{\sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime}\left(\hat{r} \cdot \hat{r}^{\prime}\right)+a}}$$
in a similar way. However, I can't seem to pull out a factor of ##r## or ##r'## to get the generating function as you can above, because of the addition of ##a##.
You might try pulling out a factor of ##\sqrt{r^2+a}## : $$\frac{1}{\sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime}\left(\hat{r} \cdot \hat{r}^{\prime}\right)+a}} = \frac{1}{\sqrt{r^2+a}} \frac{1}{\sqrt{1 -2xt+t^2}}$$ where you will need to determine expressions for ##t## and ##x##.
 
Last edited:
  • Like
Likes PhDeezNutz, vanhees71 and Delta2
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top