Expanding potential in Legendre polynomials (or spherical harmonics)

rnielsen25
Messages
25
Reaction score
1
Homework Statement
Expand $$\frac{1}{\sqrt{ (\boldsymbol{r-r'})^2+a} }$$ in legendre polynomials.
Relevant Equations
$$ \sum_{n=0}^{\infty} P_{n}(x) t^{n}=\frac{1}{\sqrt{1-2 x t+t^{2}}} $$
Using the generating function for the legendre polynomial: $$ \sum_{n=0}^{\infty} P_{n}(x) t^{n}=\frac{1}{\sqrt{1-2 x t+t^{2}}} $$ It's possible to expand the coulomb potential in a basis of legendre polynomials (or even spherical harmonic ) like this: $$ \begin{aligned} &\frac{1}{\left.\mid \vec{r}-\vec{r}^{\prime}\right]}=\frac{1}{\sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime}\left(\hat{r} \cdot \hat{r}^{\prime}\right)}}= \sum_{\ell=0}^{\infty} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} P\left(\hat{r} \cdot \hat{r}^{\prime}\right) \\ &=\sum_{\ell=0}^{\infty} \frac{4 \pi}{2 \ell+1} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} \sum_{m=-\ell}^{\ell} Y_{\ell m}^{\star}\left(\vartheta^{\prime}, \varphi^{\prime}\right) Y_{\ell m}(\vartheta, \varphi) \end{aligned} $$ Where ##r_{<}## and ##r_{>}## represent the smaller and larger of ##r## and ##r^{\prime}##.

But I need to expand
$$\frac{1}{\sqrt{ (\boldsymbol{r-r'})^2+a} }=\frac{1}{\sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime}\left(\hat{r} \cdot \hat{r}^{\prime}\right)+a}}$$
in a similar way. However, I can't seem to pull out a factor of ##r## or ##r'## to get the generating function as you can above, because of the addition of ##a##.
So how do I expand this expression in legendre polynomials?
 
Physics news on Phys.org
Nicklas said:
But I need to expand
$$\frac{1}{\sqrt{ (\boldsymbol{r-r'})^2+a} }=\frac{1}{\sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime}\left(\hat{r} \cdot \hat{r}^{\prime}\right)+a}}$$
in a similar way. However, I can't seem to pull out a factor of ##r## or ##r'## to get the generating function as you can above, because of the addition of ##a##.
You might try pulling out a factor of ##\sqrt{r^2+a}## : $$\frac{1}{\sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime}\left(\hat{r} \cdot \hat{r}^{\prime}\right)+a}} = \frac{1}{\sqrt{r^2+a}} \frac{1}{\sqrt{1 -2xt+t^2}}$$ where you will need to determine expressions for ##t## and ##x##.
 
Last edited:
  • Like
Likes PhDeezNutz, vanhees71 and Delta2
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top