Expanding potential in Legendre polynomials (or spherical harmonics)

rnielsen25
Messages
25
Reaction score
1
Homework Statement
Expand $$\frac{1}{\sqrt{ (\boldsymbol{r-r'})^2+a} }$$ in legendre polynomials.
Relevant Equations
$$ \sum_{n=0}^{\infty} P_{n}(x) t^{n}=\frac{1}{\sqrt{1-2 x t+t^{2}}} $$
Using the generating function for the legendre polynomial: $$ \sum_{n=0}^{\infty} P_{n}(x) t^{n}=\frac{1}{\sqrt{1-2 x t+t^{2}}} $$ It's possible to expand the coulomb potential in a basis of legendre polynomials (or even spherical harmonic ) like this: $$ \begin{aligned} &\frac{1}{\left.\mid \vec{r}-\vec{r}^{\prime}\right]}=\frac{1}{\sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime}\left(\hat{r} \cdot \hat{r}^{\prime}\right)}}= \sum_{\ell=0}^{\infty} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} P\left(\hat{r} \cdot \hat{r}^{\prime}\right) \\ &=\sum_{\ell=0}^{\infty} \frac{4 \pi}{2 \ell+1} \frac{r_{<}^{\ell}}{r_{>}^{\ell+1}} \sum_{m=-\ell}^{\ell} Y_{\ell m}^{\star}\left(\vartheta^{\prime}, \varphi^{\prime}\right) Y_{\ell m}(\vartheta, \varphi) \end{aligned} $$ Where ##r_{<}## and ##r_{>}## represent the smaller and larger of ##r## and ##r^{\prime}##.

But I need to expand
$$\frac{1}{\sqrt{ (\boldsymbol{r-r'})^2+a} }=\frac{1}{\sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime}\left(\hat{r} \cdot \hat{r}^{\prime}\right)+a}}$$
in a similar way. However, I can't seem to pull out a factor of ##r## or ##r'## to get the generating function as you can above, because of the addition of ##a##.
So how do I expand this expression in legendre polynomials?
 
Physics news on Phys.org
Nicklas said:
But I need to expand
$$\frac{1}{\sqrt{ (\boldsymbol{r-r'})^2+a} }=\frac{1}{\sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime}\left(\hat{r} \cdot \hat{r}^{\prime}\right)+a}}$$
in a similar way. However, I can't seem to pull out a factor of ##r## or ##r'## to get the generating function as you can above, because of the addition of ##a##.
You might try pulling out a factor of ##\sqrt{r^2+a}## : $$\frac{1}{\sqrt{r^{2}+r^{\prime 2}-2 r r^{\prime}\left(\hat{r} \cdot \hat{r}^{\prime}\right)+a}} = \frac{1}{\sqrt{r^2+a}} \frac{1}{\sqrt{1 -2xt+t^2}}$$ where you will need to determine expressions for ##t## and ##x##.
 
Last edited:
  • Like
Likes PhDeezNutz, vanhees71 and Delta2
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top