A Expectation value in Heisenberg picture: creation and annihilation

Bruno Cardin
Messages
6
Reaction score
1
TL;DR Summary
Hi. I posted this in homework, but it isn't really homework. I'm just someone who has spent 2 years in classical general relativity and find myself lost trying to re-do my final exam.
So, I have a hamiltonian for screening effect, written like:

$$ H=\sum_{k}^{}\epsilon_{k}c_{k}^{\dagger}c_{k}+ \frac{1}{\Omega}\sum_{k,q}^{}V(q,t)c_{k+q}^{\dagger}c_{k} $$

And I have to find an equation for the time evolution of the expected value of the operator ##c_{k-Q}^{\dagger}c_{k}##.

I wrote this, initially

$$ i\hbar\frac{d}{dt}c_{k-Q}^{\dagger}(t)c_{k}(t)= [c_{k-Q}^{\dagger}c_{k} , H] $$

as the time evolution equation for the operator in the Heisenberg picture. What I procceed to do is to plug a bra in the left <phi| and a ket in the right |phi> , with phi being an energy eigenstate, and then start raising and lowering energy levels since the operators ##c_{k}## are the anihilation operators (and with the dagger they switch to creation operators). But the result I have to get to, according to the exam's solution is:

$$ i\hbar\frac{d}{dt} < c_{k-Q}^{\dagger}(t)c_{k}(t) > = (\epsilon_{k}-\epsilon_{Q-k})< c_{k-Q}^{\dagger}c_{k}>+\frac{1}{\Omega}\sum_{k}^{}V(q,t)[<c_{k-Q}^{\dagger}c_{k-q} >- <c_{k+q-Q}^{\dagger}c_{k}>]$$

which has the expression of V in it.. this means I have to "open" the hamiltonian. I'm so rusty that that didn't even cross my mind. I don't get it. Could anyone help? Thank you in advance.
 
Physics news on Phys.org
This needs a bit more information. What (anti)commutation relations are satisfied by the ##c_k##'s ? Is your vacuum annihilated by ##c_k##? If not, then how is your vacuum defined?
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Back
Top