A Expectation value in Heisenberg picture: creation and annihilation

Bruno Cardin
Messages
6
Reaction score
1
TL;DR Summary
Hi. I posted this in homework, but it isn't really homework. I'm just someone who has spent 2 years in classical general relativity and find myself lost trying to re-do my final exam.
So, I have a hamiltonian for screening effect, written like:

$$ H=\sum_{k}^{}\epsilon_{k}c_{k}^{\dagger}c_{k}+ \frac{1}{\Omega}\sum_{k,q}^{}V(q,t)c_{k+q}^{\dagger}c_{k} $$

And I have to find an equation for the time evolution of the expected value of the operator ##c_{k-Q}^{\dagger}c_{k}##.

I wrote this, initially

$$ i\hbar\frac{d}{dt}c_{k-Q}^{\dagger}(t)c_{k}(t)= [c_{k-Q}^{\dagger}c_{k} , H] $$

as the time evolution equation for the operator in the Heisenberg picture. What I procceed to do is to plug a bra in the left <phi| and a ket in the right |phi> , with phi being an energy eigenstate, and then start raising and lowering energy levels since the operators ##c_{k}## are the anihilation operators (and with the dagger they switch to creation operators). But the result I have to get to, according to the exam's solution is:

$$ i\hbar\frac{d}{dt} < c_{k-Q}^{\dagger}(t)c_{k}(t) > = (\epsilon_{k}-\epsilon_{Q-k})< c_{k-Q}^{\dagger}c_{k}>+\frac{1}{\Omega}\sum_{k}^{}V(q,t)[<c_{k-Q}^{\dagger}c_{k-q} >- <c_{k+q-Q}^{\dagger}c_{k}>]$$

which has the expression of V in it.. this means I have to "open" the hamiltonian. I'm so rusty that that didn't even cross my mind. I don't get it. Could anyone help? Thank you in advance.
 
Physics news on Phys.org
This needs a bit more information. What (anti)commutation relations are satisfied by the ##c_k##'s ? Is your vacuum annihilated by ##c_k##? If not, then how is your vacuum defined?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top