1. ### Sum of the Expected Values of Two Discrete Random Variables

Apologies if this isn't the right forum for this. In my stats homework we have to prove that the expected value of aX and bY is aE[X]+bE[Y] where X and Y are random variables and a and b are constants. I have come across this proof but I'm a little rusty with summations. How is the jump from the...
2. ### Expectation of Momentum in a Classical (Infinite) Potential Well

Okay so I begin first by mentioning the length of the well to be L, with upper bound, L/2 and lower bound, -L/2 and the conjugate u* = Aexp{-iz} First I begin by writing out the expectation formula: ## \langle p \rangle = \int_{\frac{L}{2}}^{ \frac{L}{2} } Aexp(-iu) -i \hbar \frac{ \partial }{...
3. ### A Query about an article on quantum synchronization

I am currently studying this paper on quantum synchronization. The first page gives an introduction to synchronization and the basic setup of the ensembles in the cavity. My query is on the second page where the following statements are made. Can anyone see why the implication is that all...
4. ### Finding the expected value of position in a Potential Well

Homework Statement Hello today I am solving a problem where an electron is trapped in a potential well. I have a solved Schrodinger's Equation. I am having problems in figuring out what the wave function should be. When I solved the equation I got a complex exponential. I know I cannot use the...
5. ### Darwin term in a hydrogen atom - evaluating expectation values

Homework Statement Homework Equations VD= -1/(8m2c2) [pi,[pi,Vc(r)]] VC(r) = -Ze2/r Energy shift Δ = <nlm|VD|nlm> The Attempt at a Solution I can't figure out how to evaluate the expectation values that result from the Δ equation. When I do out the commutator, I get p2V-2pVp+Vp2. This...

23. ### Time Inversion Symmetry and Angular Momentum

Homework Statement Let ##\left|\psi\right\rangle## be a non-degenerate stationary state, i.e. an eigenstate of the Hamiltonian. Suppose the system exhibits symmetry for time inversion, but not necessarily for rotations. Show that the expectation value for the angular momentum operator is zero...
24. ### I Free Particle: Time dependence of expectation values Paradox

It would be really appreciated if somebody could clarify something for me: I know that stationary states are states of definite energy. But are all states of definite energy also stationary state? This question occurred to me when I considered the free particle(plane wave, not a Gaussian...

Hello! Could somebody please tell me how i can compute the expectation value of the momentum in the case of a free particle(monochromatic wave)? When i take the integral, i get infinity, but i have seen somewhere that we know how much the particle's velocity is, so i thought that we can get it...
26. ### I Expectation value in terms of density matrix

It says in Susskind's TM: ##\langle L \rangle = Tr \; \rho L = \sum_{a,a'}L_{a',a} \rho_{a,a'}## with ##a## the index of a basisvector, ##L## an observable and ##\rho## a density matrix. Is this correct? What about the trace in the third part of this equation?
27. ### QM: Time development of the probability of an Eigenvalue

The problem is actually of an introductory leven in Quantum Mechanics. I am doing a course on atomic and molecular physics and they wanted us to practice again some of the basics. I want to know where I went conceptually wrong because my answer doesn't give a total probability of one, which of...
28. ### Is the differential in the momentum operator commutative?

As it says; I was looking over some provided solutions to a problem set I was given and noticed that, in finding the expectation value for the momentum operator of a given wavefunction, the following (constants/irrelevant stuff taken out) happened in the integrand...
29. ### Harmonic oscillator positive position expectation value?!

So this is something that troubled me a bit- in Shankar's PQM, there's an exercise that asks you to find the position expectation value for the harmonic oscillator in a state \psi such that \psi=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle) Where |n\rangle is the n^{th} energy eigenstate of...
30. ### Finding expectation values for given operators

Homework Statement The Hamiltonian of an electron in solids is given by H. We know that H is an Hermitian operator, it satisfies the following eigenvalue equation: H|Φn> = εn|Φn> Let us define the following operators in terms of H as: U = e^[(iHt)/ħ] , S = sin[(Ht)/ħ] , G = (ε -...