Expected value of momentum P in terms of k

AI Thread Summary
The discussion confirms that when given a wave function in terms of momentum, the expected values of momentum can be expressed as ##\langle p \rangle = \hbar \langle k \rangle## and ##\langle p^2 \rangle = \hbar^2 \langle k^2 \rangle##. This relationship is justified based on the definitions of momentum and wave number in quantum mechanics. The equations provided illustrate how to compute these expected values from the wave function. The clarification sought pertains to the validity of these expressions in quantum mechanics. The conclusion affirms that the expressions are indeed correct.
Kyuubi
Messages
18
Reaction score
8
Homework Statement
Just need to clarify this point.
Relevant Equations
$$ \langle p \rangle = \int_{-\infty}^{\infty}\bar{\phi}(p,t) p \phi(p,t)dp $$
Now if I'm given a ##\phi(k)##, and I'm asked to find ##\langle p \rangle##, ##\langle p^2 \rangle##, etc. Am I justified to say that ##\langle p \rangle = \hbar \langle k \rangle## and that ##\langle p^2 \rangle = \hbar^2 \langle k^2 \rangle## ?
 
Physics news on Phys.org
Kyuubi said:
Homework Statement: Just need to clarify this point.
Relevant Equations: $$ \langle p \rangle = \int_{-\infty}^{\infty}\bar{\phi}(p,t) p \phi(p,t)dp $$

Now if I'm given a ##\phi(k)##, and I'm asked to find ##\langle p \rangle##, ##\langle p^2 \rangle##, etc. Am I justified to say that ##\langle p \rangle = \hbar \langle k \rangle## and that ##\langle p^2 \rangle = \hbar^2 \langle k^2 \rangle## ?
Yes.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top