Experiments in a revolving satellite

  • Context: Undergrad 
  • Thread starter Thread starter manjuvenamma
  • Start date Start date
  • Tags Tags
    Experiments Satellite
Click For Summary
SUMMARY

The discussion centers on the physics of experiments conducted in a revolving satellite, which operates under conditions of apparent weightlessness due to its high horizontal velocity and acceleration. Key points include the use of normal equations for experiments, such as surface tension in capillary tubes, where gravity is effectively zero. Participants emphasize that in a non-inertial reference frame, fictitious forces can counteract gravity, leading to unique experimental outcomes compared to Earth. The sensation of weightlessness is explained as the absence of detectable gravitational force on the body during free fall.

PREREQUISITES
  • Understanding of non-inertial reference frames
  • Familiarity with basic physics concepts such as gravity and acceleration
  • Knowledge of fluid dynamics, particularly hydrostatic pressure
  • Experience with experimental physics and data interpretation
NEXT STEPS
  • Research the effects of non-inertial frames on physical laws
  • Explore the principles of weightlessness in orbital mechanics
  • Study hydrostatic pressure equations in varying gravitational conditions
  • Investigate the implications of fictitious forces in accelerating systems
USEFUL FOR

Students and professionals in physics, aerospace engineering, and experimental science who are interested in the effects of microgravity and non-inertial reference frames on physical phenomena.

manjuvenamma
Messages
102
Reaction score
0
A revolving satellite is similar to a lift which is falling from a height. Only the difference is that the satellite has a very high horizontal velocity due to which the satellite moves forward while falling to earth. And when the Earth's curvature and the lift's downfall match, the satellite keeps revolving. Like in a freely falling lift, a man inside the satellite does not feel the gravity and his apparent weight is zero. Now when we conduct an experiment in the satellite what equations/formulas do we use? How do the expermients in satellite compare with the same on the earth? For example, when we conduct experiments of surface tension (capillary tubes), what do we use in the formula for the parameter gravity - the gravity that is really working in the satellite or the apparent gravity i,e. zero?
 
Physics news on Phys.org
If the man inside the satellite experiences zero gravity than that means all forces acting on him cancel each other out, in other words it is as good as if they didn't exist. Thus you will use normal equations but gravity will be equal to zero.
 
But satellite is accelerating i.e. it is atleast changing the direction. In an accelerating frame, the physics laws hold good?
 
manjuvenamma said:
But satellite is accelerating i.e. it is atleast changing the direction. In an accelerating frame, the physics laws hold good?

Be careful. You have non-inertial reference frame (because it's accelerating). Because of that, inertial (fictitious) force appears. It can cancel the gravity if it has the opposite direction and equal magnitude. Otherwise, the net force will be different.

So, it's obvious that some things will not be same in such conditions. Let's say that you have a balloon with air in it. If you put it in water it will not get back to the surface. There is no lift because there is no difference in hydrostatic pressures. p=p_{0} + \rho g h. Since g=0, p=p_{0}. p_{0} is the pressure outside of the water (or some other fluid).
 
manjuvenamma said:
But satellite is accelerating i.e. it is atleast changing the direction. In an accelerating frame, the physics laws hold good?

Imagine the satellite is a stone thrown at 45 degrees
It's trajectory will be a nice parabola (ignoring air resistance) But everything inside that stone (or satellite) experiences weightlessness as it goes. It is in fact completely equivalent to the weightlessness inside of a satellite in orbit above the Earth.

When you jump into the air you experience zero g the whole time.
(for about a second or two .)

Regardless of whether your motion is actually upward or downward you always feel the weightlessness.
Remember : when you jump upwards you are falling up for a short while
Then you start to fall back down.
Your acceleration is constant and is the same throughout.

edit: ..erm,
What I was trying to say is that you can completely ignore the effects of gravity inside the satellite.
Just as Nerd had said in post #2
 
Last edited:
weightlessness - a feeling.

What is this feeling of weight and weightlessness? When you are free falling, gravitation is working on you. You should feel the force, but you don't feel it. You feel weightlessness when you are free falling. Why do we feel this way, we feel "weightless" when a force is acting on us?
 
The feeling of weightlessness is simply the fact that you cannot detect the pull of gravity on your arms legs - any part of you for that matter. All you senses of touch and push/pull tell you that you are basically floating in space (disregarding air resistance of course which can give the game away)

In fact the only way you know you are moving at all is because you can see the ground coming back up toward you. But seeing is not quite the same as feeling is it. If you were a blind man you could be completely fooled into thinkig you were floating with no acceleration whatsoever. Until you hit the ground.
 

Similar threads

  • · Replies 51 ·
2
Replies
51
Views
6K
  • · Replies 42 ·
2
Replies
42
Views
7K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
4
Views
2K
  • · Replies 125 ·
5
Replies
125
Views
7K
Replies
20
Views
4K
  • · Replies 50 ·
2
Replies
50
Views
8K
  • · Replies 39 ·
2
Replies
39
Views
5K
  • · Replies 18 ·
Replies
18
Views
2K
Replies
4
Views
2K