Nugatory
Mentor
- 15,484
- 10,652
We do want to be a bit careful not to overstate our case here. We can always add or subtract an arbitrary value from the potential energy, so we can always make the potential energy at any point come out positive, negative, or zero as we please. It just so happens that often (central force problems, two otherwise isolated interacting bodies as in this thread, …) it is very convenient to take the potential energy at infinity to be zero; that is the maximum of potential energy so potential energy at any finite distance will then be negative.Bosko said:If you use Newtonian mechanics, the potential and the kinetic energy will have the same value and the opposite sign.
But in other problems we may choose different conventions. If I am standing in my front yard it may be most convenient to take the zero of gravitational potential energy to be ground level, increasing upwards. Now the mass I am holding above my head will have positive potential energy ##mgh## (reflecting the work needed to lift it to height ##h## off the ground) while the mass I dropped into the well will have negative kinetic energy (also ##mgh##, but ##h## is negative, the depth of the well below ground level).
Kinetic energy on the other hand will always be non-negative. We can choose a frame in which the kinetic energy of a given object is zero, but we can’t make it come out negative.
