- #1

Benjamin_harsh

- 211

- 5

- Homework Statement
- Determine completely the resultant of the forces acting on the step pulley shown in this figure

- Relevant Equations
- ##M_{axle} = 250 (1.25) + 1250(0.5) − 750(1.25)##

##R_{X} = \sum F_{X}##

##R_{X} = 750.sin 60^{0} + 250##

##R_{X} = 899.52 N## to the right.

##R_{y} = \sum F_{y}##

##R_{y} = 750.cos 60^{0} - 1250##

##R_{y} = - 875 N##

##R_{y} = 875 N ## downward

##R = \sqrt {R_{x}^{2} + R_{y}^{2}}##

##R = 1254.89 N##

## tan θ_{X} = \large \frac {R_{y}}{R_{x}}##

## tan θ_{X} = \large \frac {875}{899.52}##

##θ_{x} = 44.21^{0}##

##M_{axle} = \sum M_{center}##

##M_{axle} = 250 (1.25) + 1250(0.5) − 750(1.25)##

##M_{axle} = 0##

Thus, ##R = 1254.89 N## downward to the right at ##θ_{x} = 44.21_{0}## and passes through the axle.