Explanation and clarifications in epsilon-delta limit proofs

Click For Summary

Discussion Overview

The discussion focuses on the details of epsilon-delta proofs in calculus, specifically regarding the limit of a non-linear function as it approaches a specific value. Participants seek clarification on various aspects of the proof process, including the manipulation of terms, the establishment of bounds, and the interpretation of results.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants question the correctness of the scratch work and proof, particularly regarding the treatment of the term |x+2| and its dependence on epsilon.
  • There is discussion about whether the notation for delta should be equal to or less than certain values, with some suggesting that using "=" is preferable for clarity.
  • One participant raises the concept of "getting control" of |x+2| and seeks confirmation that this is synonymous with establishing an upper bound.
  • Geometric interpretations of the epsilon-delta proofs are explored, particularly in relation to the distances defined by delta around the point of interest.
  • Clarifications are sought regarding whether upper bounds are established for the entire function or just specific terms, with a focus on the justification for using |x-2| to bound |x+2|.
  • Participants compare the method of finding delta in the scratch work with that presented on an external webpage, questioning the necessity of solving quadratic equations for precise deltas.

Areas of Agreement / Disagreement

Participants express varying opinions on the correctness of the proof and the methods used. Some agree on the general approach, while others highlight potential mistakes and alternative methods, indicating that the discussion remains unresolved on several points.

Contextual Notes

Limitations include the potential ambiguity in the treatment of terms and the necessity for clear definitions of bounds. The discussion also reflects differing interpretations of the epsilon-delta framework and its application to non-linear functions.

Who May Find This Useful

Readers interested in epsilon-delta proofs, limit processes in calculus, and the nuances of mathematical reasoning in proofs may find this discussion beneficial.

bamajon1974
Messages
22
Reaction score
5
TL;DR
I have some questions about the details of epsilon-delta proofs. The questions are below the example and involve clarification and explanations of steps and details in the scratch work.
Good afternoon. I have some questions about the details of epsilon-delta proofs. Below is a simple, non-linear limit proof example which will serve as an example of the questions I have. The questions are below the example and involve clarification and explanations of steps and details in the scratch work.

Prove
$$\lim_{x \to 2} x^2 =4$$
Want to show
$$\forall \epsilon > 0, \exists \delta > 0 | \forall x \in \mathbb{R}, 0 < |x-2| < \delta \implies |x^2-4| < \epsilon$$
Scratch Work (to find ##\delta##)
- Manipulate implication ##0 < |x-2| < \delta \implies |x^2-4| < \epsilon## to find ##\delta##.
- Then ##|x^2-4| = |(x+2)(x-2)| = |x+2||x-2| < |x+2|\cdot\delta##.
- What to do with ##|x+2|## term? ##\delta## cannot depend on ##x##, only ##\epsilon##.
- Establish upper bound on ##|x+2|## term by making ##|x+2| < C## for some number ##C##, then any ##\delta \leq \frac{\epsilon}{C}## will work.
- Choose ##\delta \leq 1##. Then ##|x-2|<1 \implies -1<x-2<1 \implies 1<x<3 \implies 3<x+2<5 \implies## ##-5<3<x+2<5 \implies |x-2|<5 ##.
- Alternatively (using triangle inequality theorem), choose ##\delta \leq 1##. Then ##|x-2| < 1##. Now ##|x+2| = |x-2+4| \leq |x-2| + |4| = |x-2| + 4 < 1+4 = 5##.
- Then ##|x+2|\cdot\delta = 5\cdot\delta##.
- So ##\delta \leq 1## and ##\delta \leq \frac{\epsilon}{5}## at the same time. Take ##\delta = \min[1,\frac{\epsilon}{5}]##.
Actual Proof
Claim:
$$\forall \epsilon > 0, \exists \delta > 0 | \forall x \in \mathbb{R}, 0 < |x-2| < \delta \implies |x^2-4| < \epsilon$$
Proof:
- Let ##\epsilon > 0##.
- Take ##\delta = \min[1,\frac{\epsilon}{5}]##.
- Let ##x \in \mathbb{R}##. Assume ##0<|x-2|<\delta##. This implies ##|x-2|<\frac{\epsilon}{5}## and ##|x-2|<1##.
- Hence ##|x-2|<1 \implies -1<x-2<1 \implies 1<x<3 \implies 3<x+2<5 \implies -5<3<x+2<5## ##\implies |x-2|<5 ##.
- Then ##|x^2-4| = |(x+2)(x-2)| = |x+2||x-2| < (\frac{\epsilon}{5})\cdot5 = \epsilon##.
- Thus ##|x^2-4| < \epsilon. \blacksquare##

Questions
1. Is my scratch work and proof correct?
2. Last line of scratch work. When ##\delta## is found should it be equal to or less than or equal to some values? ##\delta = \min[1,\frac{\epsilon}{5}]## *OR* ##\delta \leq \min[1,\frac{\epsilon}{5}]##?
3. Scratch work. Is the phrase "getting control" of ##|x+2|## term the same as establishing an upper bound? I hear the "getting control" phrase frequently and want to confirm.
4. Is there any geometric interpretation to accompany the algebraic manipulations for the process of establishing an upper bound of ##|x+2|## term?
5. Similarly to Q4. In the graph of ##y=x^2##, for some ##\delta## around ##x=2##, the distance between ##2## and ##2-\delta## is not the same as the distance between ##2## and ##2+\delta##. So, from the scratch work, when ##\delta = \min[1,\frac{\epsilon}{5}]## and the smaller of the two values is chosen, can this geometrically be interpreted as picking the smaller ##\delta## band distance previously mentioned? Or are the two concepts unrelated?
6. Can I get some clarification establishing upper bounds in the scratch work? Is an upper bound established for the entire function, ##y=x^2## itself or is the upper bound found on just the ##|x+2|## term (since ##|x-2|## is bounded by ##\delta##)? I am pretty sure the latter but want to confirm. Also, I understand the algebra of turning ##|x-2|<1## into ##|x+2|<5##. But how does one justify using the ##|x-2|## term to come up with an upper bound for ##|x+2|## term?
7. Please refer to the webpage Milefoot which demonstrates epsilon-delta proofs for non-linear functions. The author(s) use a seemingly different way to find delta. How does the method for finding delta in the scratch work above differ from that in the webpage? Or why is the author of the website calculating delta in that way? Just a hunch, but in Q5, would a geometric interpretation of the unequal delta bands in a non-linear function apply to the way delta is calculated and chosen from the website instead?

Thank you for your help.
 
Last edited:
  • Like
Likes   Reactions: PeroK
Physics news on Phys.org
bamajon1974 said:
Summary:: I have some questions about the details of epsilon-delta proofs. The questions are below the example and involve clarification and explanations of steps and details in the scratch work.

- What to do with |x+2| term? δ cannot depend on x, only ϵ.
|x+2|=|x-2+4|&lt;|x-2|+4&lt;\delta+4
So
|x^2-4|&lt;\delta(\delta+4)&lt;\epsilon
is the required condition of ##\delta##.
 
bamajon1974 said:
Actual Proof
Claim:
$$\forall \epsilon > 0, \exists \delta > 0 | \forall x \in \mathbb{R}, 0 < |x-2| < \delta \implies |x^2-4| < \epsilon$$
Proof:
- Let ##\epsilon > 0##.
- Take ##\delta = \min[1,\frac{\epsilon}{5}]##.
- Let ##x \in \mathbb{R}##. Assume ##0<|x-2|<\delta##. This implies ##|x-2|<\frac{\epsilon}{5}## and ##|x-2|<1##.
- Hence ##|x-2|<1 \implies -1<x-2<1 \implies 1<x<3 \implies 3<x+2<5 \implies -5<3<x+2<5## ##\implies |x-2|<5 ##.
- Then ##|x^2-4| = |(x+2)(x-2)| = |x+2||x-2| < (\frac{\epsilon}{5})\cdot5 = \epsilon##.
- Thus ##|x^2-4| < \epsilon. \blacksquare##
This is fine, except several times you wrote ##|x - 2| < 5## instead of ##|x+2| < 5##. Also:
$$|x - 2| < 1 \ \Rightarrow \ |x+2| = |x - 2+ 4| \le |x -2| + 4 < 5$$follows from the triangle inequality.

You have definitely got the right idea about these proofs.
bamajon1974 said:
Questions
1. Is my scratch work and proof correct?
2. Last line of scratch work. When ##\delta## is found should it be equal to or less than or equal to some values? ##\delta = \min[1,\frac{\epsilon}{5}]## *OR* ##\delta \leq \min[1,\frac{\epsilon}{5}]##?
It doesn't really matter, but technically you want a specific delta, so ##=## is better.
bamajon1974 said:
7. Please refer to the webpage Milefoot which demonstrates epsilon-delta proofs for non-linear functions. The author(s) use a seemingly different way to find delta. How does the method for finding delta in the scratch work above differ from that in the webpage? Or why is the author of the website calculating delta in that way? Just a hunch, but in Q5, would a geometric interpretation of the unequal delta bands in a non-linear function apply to the way delta is calculated and chosen from the website instead?
I don't like the way the author has done that, as there is no obligation to find precise deltas by solving quadratic equations. There are easier ways to find a good-enough delta. I'll show you what I mean. We need to show that$$\lim_{x \to 5}(3x^2 -1) = 74$$Proof:

First, note that$$|(3x^2 -1) - 74| = 3|x^2 - 25| = 3|x-5||x + 5|$$Now$$0 < |x - 5| < 1 \ \Rightarrow \ |x + 5| < 11$$Let ##\epsilon < 0##, and take ##\delta = min(1,\frac{\epsilon}{33})##, then:
$$0 < |x -5| < \delta \ \Rightarrow \ |(3x^2 -1) - 74| = 3|x-5||x + 5|< 33|x-5| < \epsilon$$Note that you cannot use the technique in that webpage for cubic or higher polyomials. For example, to show that:
$$\lim_{x \to 1}(x^3 + 3x^2 -1) = 3$$we note that:$$|x^3 + 3x^2 -4| = |x -1||x^2 + 4x + 4|$$Then we need an upper bound for that quadratic when ##|x - 1| < 1##, say. Again, using the triangle inequality:
$$|x - 1| < 1 \ \Rightarrow \ |x| < 2 \ \Rightarrow \ |x^2 + 4x + 4| \le |x^2| + |4x| + 4 < 4 + 8 + 4 = 16$$And, we see that ##\delta = min(1, \frac{\epsilon}{16})## should do the trick.

In fact, you can even see the beginnings of a proof that any polynonial function has the expected limit by using the remainder theorem and the boundedness of a polynomial on a finite interval. And prove the whole lot in one fell swoop!
 
I did find some mistakes. How do I correct the mistakes in the original post?
 
bamajon1974 said:
I did find some mistakes. How do I correct the mistakes in the original post?
It might be too late now.
 

Similar threads

  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 25 ·
Replies
25
Views
4K
  • · Replies 9 ·
Replies
9
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K