Explicit demonstration of a measurement interaction

EE18
Messages
112
Reaction score
13
Homework Statement
See below.
Relevant Equations
See below.
$$\newcommand{\bra}[1]{\left \langle #1 \right \rvert}
\newcommand{\braxket}[3]{\left \langle #1 \middle \rvert #2 \middle \rvert #3 \right \rangle}
\newcommand{\ket}[1]{\left \rvert #1 \right \rangle}
\newcommand{\expec}[1]{\langle #1 \rangle}$$

Ballentine asks us the question at the end of this post. I am unclear on how to proceed because of the exponential of a tensor product operator.

My work:

We note from the outset that ##c## is unitless, as is obvious on dimensional grounds.

Suppose we have some initial, unentangled state (we assume pure states). The initial state of the object is some superposition of position states, of course.
$$\ket{\Psi_0} = \ket{\psi_0} \otimes \ket{\alpha},$$
where ##\ket{\alpha} = \int dx \, \alpha(x) \ket{x}## denotes a preparatory state of the apparatus and ##\ket{\psi_0} = \int dx\, \psi_0(x) \ket{x}## is the initial state of the object. We note that the time-development operator is given by
$$U(t) = e^{-i\int dt\, H(t)/\hbar} = e^{-icQ^{(1)}P^{(2)}\int dt\, \delta(t)/\hbar} = e^{-icQ^{(1)}P^{(2)}/\hbar}.$$
We now consider the measurement interaction:
$$\ket{\Psi_0} = \ket{\psi_0} \otimes \ket{\alpha} \to \ket{\Psi_f} = e^{-icQ^{(1)}P^{(2)}/\hbar}\ket{\psi_0} \otimes \ket{\alpha} = \int dx \int dx' \, \psi_0(x) \alpha(x') \left[ e^{-icQ^{(1)}P^{(2)}/\hbar} \ket{x} \otimes \ket{x'} \right]$$
$$ = \int dx \int dx' \, \psi_0(x) \alpha(x') \sum_{n = 0}^\infty \frac{1}{n!} \left[(-icQ^{(1)}P^{(2)}/\hbar)^n \ket{x} \otimes \ket{x'} \right]$$
$$= \int dx \int dx' \, \psi_0(x) \alpha(x') \sum_{n = 0}^\infty \frac{1}{n!} \left(\frac{-ic}{\hbar} \right)^n \left((Q^{(1)})^n \ket{x}\right) \otimes \left((P^{(2)})^n \ket{x'}\right) $$
$$= \int dx \int dx' \, \psi_0(x) \alpha(x') \sum_{n = 0}^\infty \frac{1}{n!}\left(\frac{-icx}{\hbar} \right)^n \ket{x} \otimes \left((P^{(2)})^n \ket{x'}\right) $$
$$\stackrel{(1)}{=} \int dx \int dx' \, \psi_0(x) \alpha(x') \ket{x} \otimes \left(\sum_{n = 0}^\infty \frac{1}{n!}\left(\frac{-icx}{\hbar}P^{(2)} \right)^n \ket{x'}\right)$$
$$ = \int dx \int dx' \, \psi_0(x) \alpha(x') \ket{x} \otimes \left(e^{\frac{-icx}{\hbar}P^{(2)}} \ket{x'}\right)$$
$$ = \int dx\, \psi_0(x) \ket{x}\otimes \left(\int dx' \, e^{\frac{-icx}{\hbar}P^{(2)}} \ket{x'}\alpha(x')\right)$$
$$ = \int dx\, \psi_0(x) \ket{x}\otimes \left(\int dx' \, e^{\frac{-icx}{\hbar}P^{(2)}} \ket{x'}\bra{x'}\ket{\alpha}\right)$$
$$\int dx\, \psi_0(x) \ket{x}\otimes \left( e^{\frac{-icx}{\hbar}P^{(2)}}\ket{\alpha}\right)$$
$$ \equiv \int dx\, \psi_0(x) \ket{x}\otimes \left( T^{(2)}(cx)\ket{\alpha}\right),$$
where in (1) we use the linearity of the tensor product and where in the last equality we have identified the translation operator.

Now let's consider computing ##\expec{Q^{(1)}Q^{(2)}}## on the post-interaction state (this expectation value is related to the correlation coefficient and has been the proxy which Ballentine uses for correlation). We obtain
$$\expec{Q^{(1)}Q^{(2)}} = \left[ \int dx'\, \psi^*_0(x') \bra{x'}\otimes \left( \bra{\alpha}T^{(2)}(-cx')\right)\right]Q^{(1)}Q^{(2)} \left[ \int dx\, \psi_0(x) \ket{x}\otimes \left( T^{(2)}(cx)\ket{\alpha}\right)\right]$$
$$ \stackrel{(1)}{=} \int dx \, x|\psi^*_0(x)|^2 \bra{\alpha}T^{(2)}(-cx)Q^{(2)}T^{(2)}(cx)\ket{\alpha}$$
where in (1) we've used the inner product definition on a tensor product space and ##\braxket{x'}{Q^{(1)}}{x} = x\delta(x-x')##.

But this doesn't seem to be what Ballentine wants in the end. What does he mean by the "value of ##Q^{(2)}##? I also can't see where to go past where I've gotten to. If anyone can help out I'd greatly appreciate it.

Screen Shot 2023-08-11 at 2.47.23 PM.png
 
Physics news on Phys.org
I think, it's easier to keep the time finite. The interaction operator is simple since the operator at different times commute. Thus the time-evolution operator of states in the interaction picture simply is (with ##t_0<0## to avoid trouble with the ##\delta## distribution)
$$\hat{C}(t,t_0)=exp \left (-\mathrm{i} \int_{0}^t \mathrm{d} t' \hat{H}_I(t')/\hbar \right ) = \exp[-\mathrm{i} c \hat{Q}^{(1)} \hat{P}^{(2)}/\hbar \Theta(t)].$$
Low you can set ##t>0## and just evaluate
$$|q^{(1)},q^{(2)},t \rangle=\exp(-\mathrm{i} c \hat{Q}^{(1)} \hat{P}^{(2)}/\hbar) |q^{(1)},q^{(2)},0 \rangle,$$
and then use the result to calculate the "asymptotic free state"
$$|\Psi' \rangle =\int_{q^{(1)},q^{(2)}} \mathrm{d} q^{(1)} \mathrm{d} q^{(2)} \exp(-\mathrm{i} c \hat{Q}^{(1)} \hat{P}^{(2)}/\hbar) |q^{(1)},q^{(2)},0 \rangle \langle q^{(1)},q^{(2)},0|\Psi_0 \rangle.$$
 
vanhees71 said:
I think, it's easier to keep the time finite. The interaction operator is simple since the operator at different times commute. Thus the time-evolution operator of states in the interaction picture simply is (with ##t_0<0## to avoid trouble with the ##\delta## distribution)
$$\hat{C}(t,t_0)=exp \left (-\mathrm{i} \int_{0}^t \mathrm{d} t' \hat{H}_I(t')/\hbar \right ) = \exp[-\mathrm{i} c \hat{Q}^{(1)} \hat{P}^{(2)}/\hbar \Theta(t)].$$
Low you can set ##t>0## and just evaluate
$$|q^{(1)},q^{(2)},t \rangle=\exp(-\mathrm{i} c \hat{Q}^{(1)} \hat{P}^{(2)}/\hbar) |q^{(1)},q^{(2)},0 \rangle,$$
and then use the result to calculate the "asymptotic free state"
$$|\Psi' \rangle =\int_{q^{(1)},q^{(2)}} \mathrm{d} q^{(1)} \mathrm{d} q^{(2)} \exp(-\mathrm{i} c \hat{Q}^{(1)} \hat{P}^{(2)}/\hbar) |q^{(1)},q^{(2)},0 \rangle \langle q^{(1)},q^{(2)},0|\Psi_0 \rangle.$$
Perhaps I don't follow, but isn't your last line more or less what I've given in my last line? Would you be able to comment on how ##Q^2## now provides a measurement of the initial state of the object's position ##Q^2## beforehand?
 
May be, I'm not sure. What should come out is an entangled state between the particle and the detector such that a measurement of ##Q^{(2)}## (reading of the pointer position) leads to a measurement of ##Q^{(1)}## (position of the particle). So you should calculate the state after the interaction and discuss.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top