MHB Explore Challenge Forums: Can You Solve this Integral?

Click For Summary
The discussion centers around solving the integral $$ \int_0^\infty \frac{\ln(\tan^2 (x))}{1+x^2}dx = \pi \ln(\tanh(1)). $$ A solution is presented that utilizes specific mathematical identities and integrals, including properties of logarithmic functions and series. The approach involves transforming the integral using sine and exponential functions, leading to a series representation that simplifies to the desired result. The final expression confirms the equality with the logarithm of the hyperbolic tangent function. This integral showcases advanced techniques in mathematical analysis and integration.
The Lord
Messages
4
Reaction score
0
I explored the challenge forums today and found it very interesting. I thought it would be a good idea to share a problem with this excellent community.

Show that

$$ \int_0^\infty \frac{\ln(\tan^2 (x))}{1+x^2}dx = \pi \ln(\tanh(1))$$
 
Mathematics news on Phys.org
The Lord said:
I explored the challenge forums today and found it very interesting. I thought it would be a good idea to share a problem with this excellent community.

Show that

$$ \int_0^\infty \frac{\ln(\tan^2 (x))}{1+x^2}dx = \pi \ln(\tanh(1))$$

Hi Lord!:D

My solution requires the following three facts:

$$ \log\tan^{2}\theta = -4 \sum_{n \ \mathrm{odd}}^{\infty}\frac{1}{n}\cos 2n\theta $$

$$ \sum_{n \ \mathrm{odd}}^{\infty} \frac{1}{n} x^{n} = \frac{1}{2}\log\left(\frac{1+x}{1-x}\right) $$

and

$$ \int_{0}^{\infty} \frac{t \sin t}{a^2 + t^2} \, dt = \frac{\pi}{2} e^{-|a|}$$

Then

\begin{align*}
I=\int_{0}^{\infty} \frac{\log\tan^2(x)}{1+x^2} \, dx
&= \int_{0}^{\infty} \log\tan^2(x) \left\{\int_{0}^{\infty} \sin t \, e^{-xt} \, dt \right\} \, dx \\
&= \int_{0}^{\infty} \sin t \int_{0}^{\infty} e^{-tx} \log\tan^2(x) \, dxdt \\
&= -4 \int_{0}^{\infty} \sin t \int_{0}^{\infty} \sum_{n \ \mathrm{odd}}^{\infty}\frac{1}{n} e^{-tx} \cos (2nx) \, dx dt \\
&= -4 \int_{0}^{\infty} \sin t \sum_{n \ \mathrm{odd}}^{\infty}\frac{1}{n} \frac{t}{4 n^{2} + t^{2}} \, dt \\
&= -4 \sum_{n \ \mathrm{odd}}^{\infty} \frac{1}{n} \int_{0}^{\infty} \frac{t \sin t}{4 n^{2} + t^{2}} \, dt \\
&= -2\pi \sum_{n \ \mathrm{odd}}^{\infty} \frac{1}{n} e^{-2n} \\
&= \pi \log \left( \frac{1-e^{-2}}{1+e^{-2}} \right) \\
&= \pi \log (\tanh (1))
\end{align*}
 

Similar threads

  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K