Did the OPERA Neutrino Experiment Really Discover Faster-Than-Light Travel?

  • Thread starter Thread starter QuantumLex
  • Start date Start date
  • Tags Tags
    Ftl Neutrino
Click For Summary
The OPERA experiment's claim of faster-than-light (FTL) neutrinos remains contentious, raising questions about the implications of such travel, including potential time travel effects. If neutrinos were indeed FTL, their measured speed could vary based on distance, leading to speculation about their velocity being greater over longer distances. The timing of neutrinos and light from supernova SN 1987A suggests they traveled at similar speeds, but this raises questions about whether neutrino speed is energy-dependent. Additionally, the difference in neutrino types detected in the OPERA experiment versus SN 1987A introduces uncertainty regarding their velocities and the effects of decay. The discussion highlights the need for further investigation before drawing definitive conclusions.
QuantumLex
Messages
1
Reaction score
0
Okay, so, the FTL neutrino result from the OPERA experiment is still being questioned, and that's good. But, assuming they really did travel faster than light, I have a few questions:

1.
Didn't we learn that if things travel faster than light then they travel back in time? So if the neutrinos traveled faster than light and arrived a little bit earlier than light, then they traveled back in time for that little bit.
What if we place the detector further away? Wouldn't the resulting arrival time then be earlier still, or at least "earlier" in that its velocity will be measured to be a greater multiplier of the speed of light, even if the actual detection occurred later in time (i.e., at 1x kilometers its detected velocity would be, say, 1.0001c, and at 10x kilometers, its detected velocity would be, say, 1.0010c)?

2.
The measured arrival time of neutrinos and light from supernova SN 1987A as being basically equal, is taken as evidence that neutrinos travel at the speed of light. But the question has been postulated of whether the speed of neutrinos is linked to their energy. So, if the neutrinos and photons were created in the same reaction, wouldn’t the neutrinos and light from SN 1987A be expected to reach us at the same time (this says nothing about their speed except in relation to each other).

3.
There's a difference in the type of neutrinos detected from SN 1987A and in the OPERA experiment. The question remains whether the type of neutrino matters (i.e., whether muon neutrinos and electron neutrinos travel at different speeds). There is also the additional factor that in OPERA the neutrinos started out as muon neutrinos but were detected as electron neutrinos. What is the effect of decay on velocity?
 
Last edited:
Physics news on Phys.org
This is an alert about a claim regarding the standard model, that got a burst of attention in the past two weeks. The original paper came out last year: "The electroweak η_W meson" by Gia Dvali, Archil Kobakhidze, Otari Sakhelashvili (2024) The recent follow-up and other responses are "η_W-meson from topological properties of the electroweak vacuum" by Dvali et al "Hiding in Plain Sight, the electroweak η_W" by Giacomo Cacciapaglia, Francesco Sannino, Jessica Turner "Astrophysical...

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 3 ·
Replies
3
Views
9K
  • · Replies 30 ·
2
Replies
30
Views
8K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K