MHB Exponential distribution - inequality

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We consider the exponential distribution.

I want to show that $$\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |\leq \lambda \right )\geq \frac{\lambda^4-1}{\lambda^4}$$

I have shown so far that \begin{align*}\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |\leq \lambda \right )&=\mathbb{P}\left (\frac{1-\lambda^2}{\lambda} \leq X\leq \frac{1+\lambda^2}{\lambda}\right ) \\ & =F\left (\frac{1+\lambda^2}{\lambda}\right )-F\left (\frac{1-\lambda^2}{\lambda}\right )=e^{-1+\lambda^2}-e^{-1-\lambda^2}\end{align*} Is this correct? How could we continue? (Wondering)
 
Physics news on Phys.org
Now I have an other idea. Do we maybe use Chebyshev inequality ?

We have that $$\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |< \lambda \right )=1-\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |\geq \lambda \right )\geq 1-\frac{\text{Var}(X)}{\lambda^2}=1-\frac{\frac{1}{\lambda^2}}{\lambda^2}=1-\frac{1}{\lambda^4}=\frac{\lambda^4-1}{\lambda^4}$$

But now we have $$\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |< \lambda \right )$$ instead of $$\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |\leq \lambda \right )$$ (Wondering)
 
Well done to think of Chebyshev.

The events
\[
\left\{ \left| X - \frac{1}{\lambda} \right| < \lambda \right\} \qquad \text{and} \quad \left\{ \left| X - \frac{1}{\lambda} \right| \le \lambda \right\}
\]
have the same probability because the underlying probability measure is absolutely continuous (with density equal to the exponential density with parameter $\lambda$), so the difference between strict and non-strict inequality does not matter.
 
Yep. All good.
And note that in general for a continuous distribution $P(X=x)=0$ so that $P(X>x)=P(X\ge x)$. (Thinking)
 
Great! Thank you very much! (Happy)
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top