MHB Exponential distribution - inequality

Click For Summary
The discussion focuses on the exponential distribution and the probability statement involving the inequality $$\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |\leq \lambda \right )\geq \frac{\lambda^4-1}{\lambda^4}$$. The initial calculations confirm that the probability can be expressed in terms of the cumulative distribution function, leading to the conclusion that $$\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |< \lambda \right )$$ can be derived using Chebyshev's inequality. It is clarified that for continuous distributions, the strict and non-strict inequalities yield the same probability due to the nature of the probability measure. The discussion concludes with a consensus on the correctness of the approach and the application of Chebyshev's inequality.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We consider the exponential distribution.

I want to show that $$\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |\leq \lambda \right )\geq \frac{\lambda^4-1}{\lambda^4}$$

I have shown so far that \begin{align*}\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |\leq \lambda \right )&=\mathbb{P}\left (\frac{1-\lambda^2}{\lambda} \leq X\leq \frac{1+\lambda^2}{\lambda}\right ) \\ & =F\left (\frac{1+\lambda^2}{\lambda}\right )-F\left (\frac{1-\lambda^2}{\lambda}\right )=e^{-1+\lambda^2}-e^{-1-\lambda^2}\end{align*} Is this correct? How could we continue? (Wondering)
 
Physics news on Phys.org
Now I have an other idea. Do we maybe use Chebyshev inequality ?

We have that $$\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |< \lambda \right )=1-\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |\geq \lambda \right )\geq 1-\frac{\text{Var}(X)}{\lambda^2}=1-\frac{\frac{1}{\lambda^2}}{\lambda^2}=1-\frac{1}{\lambda^4}=\frac{\lambda^4-1}{\lambda^4}$$

But now we have $$\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |< \lambda \right )$$ instead of $$\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |\leq \lambda \right )$$ (Wondering)
 
Well done to think of Chebyshev.

The events
\[
\left\{ \left| X - \frac{1}{\lambda} \right| < \lambda \right\} \qquad \text{and} \quad \left\{ \left| X - \frac{1}{\lambda} \right| \le \lambda \right\}
\]
have the same probability because the underlying probability measure is absolutely continuous (with density equal to the exponential density with parameter $\lambda$), so the difference between strict and non-strict inequality does not matter.
 
Yep. All good.
And note that in general for a continuous distribution $P(X=x)=0$ so that $P(X>x)=P(X\ge x)$. (Thinking)
 
Great! Thank you very much! (Happy)
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K