Exponential distribution - inequality

Click For Summary

Discussion Overview

The discussion revolves around the properties of the exponential distribution, specifically focusing on the probability inequality involving the mean and variance of the distribution. Participants explore methods to demonstrate that the probability of a random variable falling within a certain range is bounded by a specific expression. The scope includes mathematical reasoning and the application of inequalities in probability theory.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant presents an expression for the probability involving the exponential distribution and seeks confirmation on its correctness and guidance on further steps.
  • Another participant suggests using Chebyshev's inequality to establish a lower bound for the probability, noting a potential issue with the strict versus non-strict inequality.
  • A third participant affirms the use of Chebyshev's inequality and clarifies that the difference between strict and non-strict inequalities does not affect the probability due to the continuous nature of the distribution.
  • A fourth participant adds that for continuous distributions, the probability of a specific value is zero, reinforcing the equivalence of strict and non-strict inequalities in this context.

Areas of Agreement / Disagreement

Participants generally agree on the application of Chebyshev's inequality and the equivalence of the probabilities for strict and non-strict inequalities in the context of continuous distributions. However, there is no explicit consensus on the initial expression presented or the best method to demonstrate the inequality.

Contextual Notes

The discussion does not resolve the initial expression's correctness or the implications of using different types of inequalities. There are also assumptions regarding the properties of the exponential distribution that are not explicitly stated.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We consider the exponential distribution.

I want to show that $$\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |\leq \lambda \right )\geq \frac{\lambda^4-1}{\lambda^4}$$

I have shown so far that \begin{align*}\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |\leq \lambda \right )&=\mathbb{P}\left (\frac{1-\lambda^2}{\lambda} \leq X\leq \frac{1+\lambda^2}{\lambda}\right ) \\ & =F\left (\frac{1+\lambda^2}{\lambda}\right )-F\left (\frac{1-\lambda^2}{\lambda}\right )=e^{-1+\lambda^2}-e^{-1-\lambda^2}\end{align*} Is this correct? How could we continue? (Wondering)
 
Physics news on Phys.org
Now I have an other idea. Do we maybe use Chebyshev inequality ?

We have that $$\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |< \lambda \right )=1-\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |\geq \lambda \right )\geq 1-\frac{\text{Var}(X)}{\lambda^2}=1-\frac{\frac{1}{\lambda^2}}{\lambda^2}=1-\frac{1}{\lambda^4}=\frac{\lambda^4-1}{\lambda^4}$$

But now we have $$\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |< \lambda \right )$$ instead of $$\mathbb{P}\left (\left |X-\frac{1}{\lambda}\right |\leq \lambda \right )$$ (Wondering)
 
Well done to think of Chebyshev.

The events
\[
\left\{ \left| X - \frac{1}{\lambda} \right| < \lambda \right\} \qquad \text{and} \quad \left\{ \left| X - \frac{1}{\lambda} \right| \le \lambda \right\}
\]
have the same probability because the underlying probability measure is absolutely continuous (with density equal to the exponential density with parameter $\lambda$), so the difference between strict and non-strict inequality does not matter.
 
Yep. All good.
And note that in general for a continuous distribution $P(X=x)=0$ so that $P(X>x)=P(X\ge x)$. (Thinking)
 
Great! Thank you very much! (Happy)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
1
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K