MHB Exponential Equation Help with Log Tables

  • Thread starter Thread starter cbarker1
  • Start date Start date
  • Tags Tags
    Exponential Log
AI Thread Summary
To solve the equation ${2.884}^{x}=0.01439$ using log tables, the correct approach involves calculating the logarithms of both sides. The exact solution is given as $x=\frac{\log(0.01439)}{\log(2.884)}$, which simplifies to approximately -4.004. Errors in earlier calculations were identified, particularly in the evaluation of $\log(0.01439)$, which should be correctly calculated as $\log(1.439) - 2$. The final calculations confirm that the logarithmic values lead to the correct result of $x \approx -4.004$.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Directions: Use a log table to solve for x:

${2.884}^{x}=0.01439$

$x*\log\left({2.884}\right)=\log\left({0.01439}\right)$

$x=\frac{\log\left({0.01439}\right)}{\log\left({2.884}\right)}$ is the exact answer.

The solution to the problem is -4.004 in the back of the book.

To evaluate the logarithms with table:

$\log\left({.01439}\right)\equiv\log\left({1.439}\right)-2, where \log\left({1.439}\right)=.15806$

$-2.15806, 8.15806-10$

$\log\left({2.884}\right)=.46000$

$x=\frac{-2.15806}{.46000}$ drop the negative sign to compute the logarithms.

$\log\left({\frac{2.15806}{.46}}\right)=\log\left({2.15806}\right)-\log\left({.46}\right)$

$\log\left({2.15806}\right)=.3340512$

$.3340512, 10.3340512-10$

$\log\left({.4600}\right)\equiv\log\left({4.600}\right)-1, where \log\left({4.600}\right)=.66276$

$-1.66276, 9.66276-10$

Now, I need some help to subtract the correct values of $\log\left({2.15806}\right)$ and $\log\left({.46000}\right)$ to get the answer of .60249 in the log table.Thanks for the help

CBarker1
 
Last edited:
Mathematics news on Phys.org
Cbarker1 said:
Directions: Use a log table to solve for x:

${2.884}^{x}=0.01439$

$x*\log\left({2.884}\right)=\log\left({0.01439}\right)$

$x=\frac{\log\left({0.01439}\right)}{\log\left({2.884}\right)}$ is the exact answer.

The solution to the problem is -4.004 in the back of the book.

To evaluate the logarithms with table:

$\log\left({.01439}\right)\equiv\color{red}\log\left({1.439}\right)-2, where \log\left({1.439}\right)=.15806$

$\color{red}-2.15806, 8.15806-10$

...

Good morning,

I've marked in red the calculations where you made a mistake:

$$-2 + 0.15806 \approx -1.84194$$

and

$$\log(1.84194) = 0.26528$$

This error occurs in your following calculations again.

The best would be if you keep mantissae and prefixes separated.
 
Cbarker1 said:
Directions: Use a log table to solve for x:

...

Hello again,

I'll show you how I've learned to use a log table. (I visited school without calculators or computers. The most advanced piece of technology was a slide-ruler!)

You want to calculate

$$|x| = \frac{1.84194}{0.46}$$

with a log table. "op" means operation of the logarithms, N is the numerus and log means the logarithm base 10.

$$\begin{array}{c|l|c|l}op & N & & log \\ \hline \text{-} & 1.84194 & \rightarrow & 0.26528 \\ & 0.46 & \rightarrow & 0.66276 - 1 \\ \hline & 4.0042 & \leftarrow & 0.60252 \end{array}$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
15
Views
3K
Replies
3
Views
2K
Replies
8
Views
3K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
4
Views
2K
Replies
2
Views
2K
Back
Top