Express the value in a single fraction

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Fraction Value
Click For Summary

Discussion Overview

The discussion revolves around a mathematical problem involving the expression of a value in a single fraction. Participants explore the equation involving real numbers \(x_1, x_2, x_3, x_4, x_5\) and their relationship to a given equation for specific values of \(m\). The scope includes mathematical reasoning and problem-solving techniques.

Discussion Character

  • Mathematical reasoning
  • Homework-related
  • Technical explanation

Main Points Raised

  • Post 1 presents the initial problem statement, outlining the equation that must be satisfied for \(m=1, 2, 3, 4, 5\).
  • Post 2 provides a fraction \(\frac{187465}{6744582}\) as a potential solution, along with its continued fraction representation and unit fraction expansion.
  • Post 3 reiterates the same fraction and expansions as in Post 2, indicating a possible agreement on the solution.
  • Post 4 repeats the problem statement, suggesting a focus on the method of solving rather than the solution itself.

Areas of Agreement / Disagreement

There appears to be some agreement on the value of the fraction provided in Posts 2 and 3, but the method of arriving at this solution is not fully explored or agreed upon. Post 4 seeks clarification on the solving method, indicating that the discussion on methodology remains unresolved.

Contextual Notes

The discussion does not clarify the assumptions or methods used to derive the fraction, leaving the mathematical steps and reasoning open to interpretation.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x_1, x_2, x_3, x_4, x_5$ be real numbers satisfying the following equation:

$\dfrac{x_1}{m^2+1}+\dfrac{x_2}{m^2+2}+\dfrac{x_3}{m^2+3}+\dfrac{x_4}{m^2+4}+\dfrac{x_5}{m^2+5}= \dfrac{1}{m^2}$ for $m=1, 2, 3, 4, 5$.

Find the value of
$\dfrac{x_1}{37}+\dfrac{x_2}{38}+\dfrac{x_3}{39}+ \dfrac{x_4}{40}+\dfrac{x_5}{41}$
 
Mathematics news on Phys.org
[sp]
Fraction:$\frac{187465}{6744582}$

Continued fraction: $[0,35,1,44,111,2,2,12,4]$

Unit fraction expansion: $\frac{1}{36}+\frac{1}{58395}+\frac{1}{9724688047}+\frac{1}{283708672824669334580}$
[/sp]
 
eddybob123 said:
[sp]
Fraction:$\frac{187465}{6744582}$

Continued fraction: $[0,35,1,44,111,2,2,12,4]$

Unit fraction expansion: $\frac{1}{36}+\frac{1}{58395}+\frac{1}{9724688047}+\frac{1}{283708672824669334580}$
[/sp]

Thank you so much for participating, eddybob123.

Your answer is correct, but I hope you can share with me the method you used to solve this problem. :o

By sharing that means a brief explanation on the concept that you employed will suffice.
 
anemone said:
Let $x_1, x_2, x_3, x_4, x_5$ be real numbers satisfying the following equation:

$\dfrac{x_1}{m^2+1}+\dfrac{x_2}{m^2+2}+\dfrac{x_3}{m^2+3}+\dfrac{x_4}{m^2+4}+\dfrac{x_5}{m^2+5}= \dfrac{1}{m^2}$ for $m=1, 2, 3, 4, 5$.

Find the value of
$\dfrac{x_1}{37}+\dfrac{x_2}{38}+\dfrac{x_3}{39}+ \dfrac{x_4}{40}+\dfrac{x_5}{41}$

Solution provided by other:

Let $f(x)=\dfrac{x_1}{m^2+1}+\dfrac{x_2}{m^2+2}+\dfrac{x_3}{m^2+3}+\dfrac{x_4}{m^2+4}+\dfrac{x_5}{m^2+5}$, then

$f(\pm 1)=1$, $f(\pm 2)=\dfrac{1}{4}$, $f(\pm 3)=\dfrac{1}{9}$, $f(\pm 4)=\dfrac{1}{16}$, $f(\pm 5)=\dfrac{1}{25}$, and $f(6)$ is the value to be found.

Next, we let $g(x)=(x^2+1)(x^2+2)(x^2+3)(x^2+4)(x^2+5)$ and $h(x)=f(x)g(x)$.

Then for $m=\pm1, \pm2, \pm3, \pm4, \pm5$, we get $h(x)=f(x)g(x)=\dfrac{g(x)}{m^2}$, i.e. $g(x)-m^2h(x)=0$.

Since $g(x)-x^2h(x)$ is a polynomial of degree 10 with roots $\pm1, \pm2, \pm3, \pm4, \pm5$, we get

$g(x)-x^2h(x)=A(x^2-1)(x^2-4)(x^2-9)(x^2-16)(x^2-25)$ (*)

Putting $x=0$ we get $A=\dfrac{g(0)}{(-1)(-4)(-9)(-16)(-25)}=-\dfrac{1}{120}$.

Finally, dividing both sides of (*) by $g(x)$ gives

$\dfrac{g(x)-x^2h(x)}{g(x)}=-\dfrac{(x^2-1)(x^2-4)(x^2-9)(x^2-16)(x^2-25)}{120g(x)}$ (*)

$1-x^2\dfrac{h(x)}{g(x)}=1-x^2f(x)=-\dfrac{1}{120}\cdot\dfrac{(x^2-1)(x^2-4)(x^2-9)(x^2-16)(x^2-25)}{(x^2+1)(x^2+2)(x^2+3)(x^2+4)(x^2+5)}$ and hence

$1-36f(6)=\dfrac{35\cdot32\cdot27\cdot20\cdot11}{120 \cdot 37\cdot38\cdot39\cdot40\cdot41}=-\dfrac{231}{374699}$,

which implies $f(6)=\dfrac{187465}{6744582}$.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K