MHB Expressing sin/cos(2θ) in terms of x....

  • Thread starter Thread starter TrigEatsMe
  • Start date Start date
  • Tags Tags
    Terms
AI Thread Summary
The discussion focuses on expressing trigonometric functions in terms of a variable x. The user successfully derived the formula for sin(2θ) as (2x/9)√(9-x^2) when x = 3cos(θ). However, they encountered difficulties with the expression for cos(2θ) when x + 1 = 3sin(θ). After some calculations, they found cos(2θ) to be (7 - 4x - 2x^2)/9. The thread seeks further clarification and tips on handling the transformation involving x + 1.
TrigEatsMe
Messages
6
Reaction score
0
For the question,
If x = 3cos(θ), 0<θ<π/2, express sin(2θ) in terms of x.

I confirmed that the following is correct:
sin(2θ)=(2x/9)√(9-x^2)

But for this next one...the x+1 is throwing me through a loop or something.

If x+1 = 3sin(θ), 0<θ<π/2, express cos(2θ) in terms of x.

cos(2θ) = fail

Any tips would be appreciated. Thanks!
 
Mathematics news on Phys.org
TrigEatsMe said:
For the question,
If x = 3cos(θ), 0<θ<π/2, express sin(2θ) in terms of x.

I confirmed that the following is correct:
sin(2θ)=(2x/9)√(9-x^2)

But for this next one...the x+1 is throwing me through a loop or something.

If x+1 = 3sin(θ), 0<θ<π/2, express cos(2θ) in terms of x.

cos(2θ) = fail

Any tips would be appreciated. Thanks!

$\displaystyle \begin{align*} \cos{ \left( 2\theta \right) } &= 1 - 2\sin^2{ \left( \theta \right) } \\ &= 1 - 2 \left( \frac{x + 1}{3} \right) ^2 \\ &= 1 - 2 \left( \frac{x^2 + 2x + 1}{9} \right) \\ &= 1 - \frac{2x^2 + 4x + 2}{9} \\ &= \frac{9}{9} - \frac{2x^2 + 4x + 2}{9} \\ &= \frac{7 - 4x - 2x^2}{9} \end{align*}$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top