MHB Expressing sin/cos(2θ) in terms of x....

  • Thread starter Thread starter TrigEatsMe
  • Start date Start date
  • Tags Tags
    Terms
AI Thread Summary
The discussion focuses on expressing trigonometric functions in terms of a variable x. The user successfully derived the formula for sin(2θ) as (2x/9)√(9-x^2) when x = 3cos(θ). However, they encountered difficulties with the expression for cos(2θ) when x + 1 = 3sin(θ). After some calculations, they found cos(2θ) to be (7 - 4x - 2x^2)/9. The thread seeks further clarification and tips on handling the transformation involving x + 1.
TrigEatsMe
Messages
6
Reaction score
0
For the question,
If x = 3cos(θ), 0<θ<π/2, express sin(2θ) in terms of x.

I confirmed that the following is correct:
sin(2θ)=(2x/9)√(9-x^2)

But for this next one...the x+1 is throwing me through a loop or something.

If x+1 = 3sin(θ), 0<θ<π/2, express cos(2θ) in terms of x.

cos(2θ) = fail

Any tips would be appreciated. Thanks!
 
Mathematics news on Phys.org
TrigEatsMe said:
For the question,
If x = 3cos(θ), 0<θ<π/2, express sin(2θ) in terms of x.

I confirmed that the following is correct:
sin(2θ)=(2x/9)√(9-x^2)

But for this next one...the x+1 is throwing me through a loop or something.

If x+1 = 3sin(θ), 0<θ<π/2, express cos(2θ) in terms of x.

cos(2θ) = fail

Any tips would be appreciated. Thanks!

$\displaystyle \begin{align*} \cos{ \left( 2\theta \right) } &= 1 - 2\sin^2{ \left( \theta \right) } \\ &= 1 - 2 \left( \frac{x + 1}{3} \right) ^2 \\ &= 1 - 2 \left( \frac{x^2 + 2x + 1}{9} \right) \\ &= 1 - \frac{2x^2 + 4x + 2}{9} \\ &= \frac{9}{9} - \frac{2x^2 + 4x + 2}{9} \\ &= \frac{7 - 4x - 2x^2}{9} \end{align*}$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top