MHB Extend to an orthonormal basis for R^3

Petrus
Messages
702
Reaction score
0
Hello MHB,
(I Hope the picture is read able)
154unac.jpg

this is a exemple on My book ( i am supposed to find a singular value decomposition) well My question is in the book when they use gram-Schmidt to extand they use $$(u_1,u_2,e_3)$$ but I would use $$(u_1,u_2,e_1)$$ cause it is orthogonal against u_2 which make the gram-Schmidt easy!:) does My method works as well?
Edit: I am pretty sure it works cause it is orthonormal to the other! Just want confirmed:)!
Regards,
$$|\pi\rangle$$
 
Last edited:
Physics news on Phys.org
Re: Extend to a orthonornal basis for R^3

When you are asked to derive an orthonormal set from a set of vectors, different orders will give different results but they will all be orthonormal sets. Any of those would be a correct answer. (Unless the order is specifically mentioned in the problem.)
 
Re: Extend to a orthonornal basis for R^3

HallsofIvy said:
When you are asked to derive an orthonormal set from a set of vectors, different orders will give different results but they will all be orthonormal sets. Any of those would be a correct answer. (Unless the order is specifically mentioned in the problem.)
Thanks for the answer and thanks for taking your time! Have a nice day!:)

Regards,
$$|\pi\rangle$$
 
Petrus, what you say is true, but in the case of a standard basis vector we have:

$\text{proj}_{\mathbf{v}}(\mathbf{e}_j) = \dfrac{\mathbf{v}\cdot\mathbf{e}_j} {\mathbf{v}\cdot \mathbf{v}}\mathbf{v}$

If $\mathbf{v}$ is already a unit vector, this becomes:

$v_j\mathbf{v}$.

So if we pick $\mathbf{v}_3 = \mathbf{e}_3$ (as your text does), then Gram-Schmidt gives:

$\mathbf{u}_3 = \mathbf{e}_3 - \text{proj}_{\mathbf{u}_1}(\mathbf{e}_3) - \text{proj}_{\mathbf{u}_2}(\mathbf{e}_3)$

$= (0,0,1) -\dfrac{1}{\sqrt{6}}\left(\dfrac{2}{\sqrt{6}}, \dfrac{1}{\sqrt{6}},\dfrac{1}{\sqrt{6}}\right) - \dfrac{1}{\sqrt{2}}\left(0,\dfrac{-1}{\sqrt{2}},\dfrac{1}{\sqrt{2}}\right)$

$= (0,0,1) - \left(\dfrac{1}{3},\dfrac{1}{6},\dfrac{1}{6}\right) - \left(0,\dfrac{-1}{2},\dfrac{1}{2}\right)$

$= \left(\dfrac{-1}{3},\dfrac{1}{3},\dfrac{1}{3}\right)$

which upon normalization clearly becomes the $\mathbf{u}_3$ in your text.

Yes, you are correct that if we pick $\mathbf{v}_3 = \mathbf{e}_1$, then one of the projection terms we subtract is 0, and we get:

$\mathbf{u}_3 = (1,0,0) - \dfrac{2}{\sqrt{6}}\left(\dfrac{2}{\sqrt{6}}, \dfrac{1}{\sqrt{6}},\dfrac{1}{\sqrt{6}}\right)$

$= (1,0,0) - \left(\dfrac{2}{3},\dfrac{1}{3},\dfrac{1}{3}\right)$

$= \left(\dfrac{1}{3},\dfrac{-1}{3},\dfrac{-1}{3}\right)$

This is the negative (upon normalization) of the vector your book found, and is clearly also perpendicular to the plane spanned by $\{\mathbf{u}_1,\mathbf{u}_2\}$.

Now it's largely a matter of preference as to which $U$ you use, one will be orientation-preserving, and one will be orientation-reversing. I'm a bit surprised your text chose the orientation-reversing matrix, but as you can see, both methods work out (up to a sign difference) the same (and it turns out the sign of the 3rd column of $U$ doesn't matter, because the 3rd row of $\Sigma$ is 0).
 
Deveno said:
Petrus, what you say is true, but in the case of a standard basis vector we have:

$\text{proj}_{\mathbf{v}}(\mathbf{e}_j) = \dfrac{\mathbf{v}\cdot\mathbf{e}_j} {\mathbf{v}\cdot \mathbf{v}}\mathbf{v}$

If $\mathbf{v}$ is already a unit vector, this becomes:

$v_j\mathbf{v}$.

So if we pick $\mathbf{v}_3 = \mathbf{e}_3$ (as your text does), then Gram-Schmidt gives:

$\mathbf{u}_3 = \mathbf{e}_3 - \text{proj}_{\mathbf{u}_1}(\mathbf{e}_3) - \text{proj}_{\mathbf{u}_2}(\mathbf{e}_3)$

$= (0,0,1) -\dfrac{1}{\sqrt{6}}\left(\dfrac{2}{\sqrt{6}}, \dfrac{1}{\sqrt{6}},\dfrac{1}{\sqrt{6}}\right) - \dfrac{1}{\sqrt{2}}\left(0,\dfrac{-1}{\sqrt{2}},\dfrac{1}{\sqrt{2}}\right)$

$= (0,0,1) - \left(\dfrac{1}{3},\dfrac{1}{6},\dfrac{1}{6}\right) - \left(0,\dfrac{-1}{2},\dfrac{1}{2}\right)$

$= \left(\dfrac{-1}{3},\dfrac{1}{3},\dfrac{1}{3}\right)$

which upon normalization clearly becomes the $\mathbf{u}_3$ in your text.

Yes, you are correct that if we pick $\mathbf{v}_3 = \mathbf{e}_1$, then one of the projection terms we subtract is 0, and we get:

$\mathbf{u}_3 = (1,0,0) - \dfrac{2}{\sqrt{6}}\left(\dfrac{2}{\sqrt{6}}, \dfrac{1}{\sqrt{6}},\dfrac{1}{\sqrt{6}}\right)$

$= (1,0,0) - \left(\dfrac{2}{3},\dfrac{1}{3},\dfrac{1}{3}\right)$

$= \left(\dfrac{1}{3},\dfrac{-1}{3},\dfrac{-1}{3}\right)$

This is the negative (upon normalization) of the vector your book found, and is clearly also perpendicular to the plane spanned by $\{\mathbf{u}_1,\mathbf{u}_2\}$.

Now it's largely a matter of preference as to which $U$ you use, one will be orientation-preserving, and one will be orientation-reversing. I'm a bit surprised your text chose the orientation-reversing matrix, but as you can see, both methods work out (up to a sign difference) the same (and it turns out the sign of the 3rd column of $U$ doesn't matter, because the 3rd row of $\Sigma$ is 0).
Thanks a LOT I always like your post! Thanks for taking your time and have a nice day!:)

Regards,
$$|\pi\rangle$$
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
14
Views
4K
Replies
6
Views
2K
Replies
2
Views
1K
Replies
23
Views
2K
Replies
1
Views
3K
Replies
7
Views
1K
Replies
4
Views
2K
Replies
5
Views
3K
Back
Top