if I have a functional with a Lagrangian L(t,x(t),y(t),x'(t),y'(t)), meaning two functions x and y of one parameter t. And want to solve the minimization problem $$ \int_0^t L dt $$ . Then I get necessary conditions to find extrema by getting the two Euler Lagrange equation $$ \frac{\partial L}{\partial x}- \frac{d}{dt} \frac {\partial L}{\partial x'}=0$$ and $$ \frac{\partial L}{\partial y}- \frac{d}{dt} \frac {\partial L}{\partial y'}=0$$(adsbygoogle = window.adsbygoogle || []).push({});

now, if i solved these functions. how do i find out, that it is an actual minimum? are there methods to show this in general? i know, that in case of one variable it would be sufficient to show somehow that the lagrangian is convex. but is there a way to do this in this case too? or do i need to calculate a second derivative? if this is necessary, can someone give me a referece, where this is done for functionals of several functions or show me a way to do this?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Extremal condition calculus of variations

**Physics Forums | Science Articles, Homework Help, Discussion**