F has an uniquely defined global minimum

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Global Minimum
Click For Summary
SUMMARY

The function \( f:\mathbb{R}^n\rightarrow \mathbb{R} \) defined by \( f(x)=\sum_{j=1}^k\|x-a_j\|^2 \) has a uniquely defined global minimum at \( x=\frac{1}{k}\sum_{j=1}^ka_j \). The gradient \( \text{grad}(f) \) is calculated to be \( 2k x - 2\sum_{j=1}^k a_j \), and setting this equal to zero yields the critical point. The Hessian matrix is diagonal with eigenvalues \( \lambda=2k>0 \), confirming that the critical point is a local minimum. As \( x \to \infty \), \( f(x) \) approaches \( +\infty \), establishing that this local minimum is also a global minimum.

PREREQUISITES
  • Understanding of Euclidean norms and their properties
  • Familiarity with gradient and Hessian matrix concepts
  • Knowledge of critical points and their significance in optimization
  • Basic understanding of the Kronecker delta function
NEXT STEPS
  • Study the properties of convex functions and their global minima
  • Learn about optimization techniques in multivariable calculus
  • Explore the implications of the Hessian matrix in determining local extrema
  • Investigate the role of the Kronecker delta in mathematical proofs and expressions
USEFUL FOR

Mathematicians, optimization specialists, and students studying multivariable calculus or mathematical analysis who are interested in understanding global minima in functions.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $a_1, a_2, \ldots , a_k\in \mathbb{R}^n$ and $f:\mathbb{R}^n\rightarrow \mathbb{R}$ defined by $\displaystyle{f(x)=\sum_{j=1}^k\|x-a_j\|^2}$ with the euclidean norm $\|\cdot \|$.
Show that f has an uniquely defined global minimum and calculate it. I have done the following:
\begin{equation*}f(x)=\sum_{j=1}^k\|x-a_j\|^2=\sum_{j=1}^k\sum_{i=1}^n(x_i-a_j)^2\end{equation*} The partial derivative in respect to $x_m$ is \begin{align*} f_{x_m}&=\sum_{j=1}^k2(x_m-a_j)=\sum_{j=1}^k2x_m-\sum_{j=1}^ka_j=2x_m\sum_{j=1}^k1-\sum_{j=1}^ka_j=2x_mk-\sum_{j=1}^ka_j\\ & =2kx_m-\sum_{j=1}^ka_j\end{align*}

The gradient is \begin{equation*}\text{grad}(f)=\begin{pmatrix}f_{x_1} \\ f_{x_2} \\ f_{x_3} \\ \vdots \\ f_{x_{n-1}} \\ f_{x_n}\end{pmatrix}=\begin{pmatrix}2kx_1-\displaystyle{\sum_{j=1}^ka_j}\\ 2kx_2-\displaystyle{\sum_{j=1}^ka_j} \\ 2kx_3-\displaystyle{\sum_{j=1}^ka_j} \\ \vdots \\ 2kx_{n-1}-\displaystyle{\sum_{j=1}^ka_j} \\ 2kx_n-\displaystyle{\sum_{j=1}^ka_j}\end{pmatrix}=2k\begin{pmatrix}x_1\\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \\ x_n\end{pmatrix}-\displaystyle{\sum_{j=1}^ka_j}\begin{pmatrix}1\\ 1 \\ 1 \\ \vdots \\ 1 \\ 1\end{pmatrix}=2kx-\displaystyle{\sum_{j=1}^ka_j}\begin{pmatrix}1\\ 1 \\ 1 \\ \vdots \\ 1 \\ 1\end{pmatrix}\end{equation*}

We get the critical point if we set the gradient equal to $0$: \begin{equation*}2kx-\displaystyle{\sum_{j=1}^ka_j}\begin{pmatrix}1\\ 1 \\ 1 \\ \vdots \\ 1 \\ 1\end{pmatrix}=\begin{pmatrix}0\\ 0 \\ 0 \\ \vdots \\ 0 \\ 0\end{pmatrix} \Rightarrow 2kx=\displaystyle{\sum_{j=1}^ka_j}\begin{pmatrix}1\\ 1 \\ 1 \\ \vdots \\ 1 \\ 1\end{pmatrix}\Rightarrow x=\left (\frac{1}{2k}\cdot \displaystyle{\sum_{j=1}^ka_j}\right )\cdot \begin{pmatrix}1\\ 1 \\ 1 \\ \vdots \\ 1 \\ 1\end{pmatrix}\end{equation*}

So, we have an extremum at $\left (\frac{1}{2k}\cdot \displaystyle{\sum_{j=1}^ka_j}\right )\cdot \begin{pmatrix}1\\ 1 \\ 1 \\ \vdots \\ 1 \\ 1\end{pmatrix}$.

The partial derivatives of second order are
\begin{align*}&f_{x_mx_m}=\frac{\partial}{\partial{x_m}}\left (2kx_m-\sum_{j=1}^ka_j\right )=2k \\ &f_{x_mx_{\ell}}=\frac{\partial}{\partial{x_{\ell}}}\left (2kx_m-\sum_{j=1}^ka_j\right )=0\end{align*}

So the Hessian-Matrix is:
\begin{equation*}H_f(x)=\begin{pmatrix}2k & 0 & 0 & \ldots & 0 & 0 \\ 0 & 2k & 0 & \ldots & 0 & 0 \\ 0 & 0 & 2k & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 &2k & 0\\ 0 & 0 & \ldots & 0 & 0 &2k\end{pmatrix}\end{equation*}

Since we have a diagonal matrix, we get the eigenvalue from the diagonal: $\lambda=2k>0$.

Since $2k$ is positive, it follows that at the critical point we have a local minimum. Is everything correct? How can we show that this is a global minimum?
By uniquely defined is it mean that we have just one minimum?

(Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Let $a_1, a_2, \ldots , a_k\in \mathbb{R}^n$ and $f:\mathbb{R}^n\rightarrow \mathbb{R}$ defined by $\displaystyle{f(x)=\sum_{j=1}^k\|x-a_j\|^2}$ with the euclidean norm $\|\cdot \|$.
Show that f has an uniquely defined global minimum and calculate it. I have done the following:
\begin{equation*}f(x)=\sum_{j=1}^k\|x-a_j\|^2=\sum_{j=1}^k\sum_{i=1}^n(x_i-a_j)^2\end{equation*}

Hey mathmari!

Shouldn't that be:
\begin{equation*}f(x)=\sum_{j=1}^k\|x-a_j\|^2=\sum_{j=1}^k\sum_{i=1}^n(x_i-a_{j;i})^2\end{equation*}
(Thinking)

mathmari said:
The partial derivative in respect to $x_m$ is \begin{align*} f_{x_m}&=\sum_{j=1}^k2(x_m-a_j)=\sum_{j=1}^k2x_m-\sum_{j=1}^ka_j=2x_m\sum_{j=1}^k1-\sum_{j=1}^ka_j=2x_mk-\sum_{j=1}^ka_j\\ & =2kx_m-\sum_{j=1}^ka_j\end{align*}

That also applies here, and wasn't a factor 2 dropped?
That is, shouldn't it be:
\begin{align*} f_{x_m}&=\sum_{j=1}^k2(x_m-a_{j;m})=\sum_{j=1}^k2x_m-2\sum_{j=1}^ka_{j;m}=2x_m\sum_{j=1}^k1-2\sum_{j=1}^ka_{j;m}=2x_mk-2\sum_{j=1}^ka_{j;m}\\ & =2kx_m-2\sum_{j=1}^ka_{j;m}\end{align*}
(Thinking)
 
I like Serena said:
Shouldn't that be:
\begin{equation*}f(x)=\sum_{j=1}^k\|x-a_j\|^2=\sum_{j=1}^k\sum_{i=1}^n(x_i-a_{j;i})^2\end{equation*}
(Thinking)
That also applies here, and wasn't a factor 2 dropped?
That is, shouldn't it be:
\begin{align*} f_{x_m}&=\sum_{j=1}^k2(x_m-a_{j;m})=\sum_{j=1}^k2x_m-2\sum_{j=1}^ka_{j;m}=2x_m\sum_{j=1}^k1-2\sum_{j=1}^ka_{j;m}=2x_mk-2\sum_{j=1}^ka_{j;m}\\ & =2kx_m-2\sum_{j=1}^ka_{j;m}\end{align*}
(Thinking)

Oh yes, you're right! (Tmi) The gradient is then equal to \begin{equation*}\text{grad}(f)=\begin{pmatrix}f_{x_1} \\ f_{x_2} \\ f_{x_3} \\ \vdots \\ f_{x_{n-1}} \\ f_{x_n}\end{pmatrix}=\begin{pmatrix}2kx_1-\displaystyle{2\sum_{j=1}^ka_{j;1}}\\ 2kx_2-\displaystyle{2\sum_{j=1}^ka_{j;2}} \\ 2kx_3-\displaystyle{2\sum_{j=1}^ka_{j;3}} \\ \vdots \\ 2kx_{n-1}-\displaystyle{2\sum_{j=1}^ka_{j;(n-1)}} \\ 2kx_n-\displaystyle{2\sum_{j=1}^ka_{j;n}}\end{pmatrix}=2k\begin{pmatrix}x_1\\ x_2 \\ x_3 \\ \vdots \\ x_{n-1} \\ x_n\end{pmatrix}-2\begin{pmatrix}\displaystyle{\sum_{j=1}^ka_{j;1}}\\ \displaystyle{\sum_{j=1}^ka_{j;2}} \\ \displaystyle{\sum_{j=1}^ka_{j;3}} \\ \vdots \\ \displaystyle{\sum_{j=1}^ka_{j;(n-1)}} \\ \displaystyle{\sum_{j=1}^ka_{j;n}}\end{pmatrix}=2kx-2\displaystyle{\sum_{j=1}^ka_{j}}\end{equation*}

For the ccritical point we set the gradient equal to $0$: \begin{equation*}2kx-2\displaystyle{\sum_{j=1}^ka_{j}}=\mathbf{0} \Rightarrow 2kx=2\displaystyle{\sum_{j=1}^ka_{j}}\Rightarrow x=\frac{1}{k}\displaystyle{\sum_{j=1}^ka_{j}}\end{equation*}

So, we have an extremum at $\frac{1}{k}\displaystyle{\sum_{j=1}^ka_{j}}$.

The partial derivatives of second order are:
\begin{align*}&f_{x_mx_m}=\frac{\partial}{\partial{x_m}}\left (2kx_m-2\sum_{j=1}^ka_{j;m}\right )=2k \\ &f_{x_mx_{\ell}}=\frac{\partial}{\partial{x_{\ell}}}\left (2kx_m-2\sum_{j=1}^ka_{j;m}\right )=0\end{align*}

The Hessian matrix is equal to
\begin{equation*}H_f(x)=\begin{pmatrix}2k & 0 & 0 & \ldots & 0 & 0 \\ 0 & 2k & 0 & \ldots & 0 & 0 \\ 0 & 0 & 2k & \ldots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 &2k & 0\\ 0 & 0 & \ldots & 0 & 0 &2k\end{pmatrix}\end{equation*}

The only eigenvalue is $\lambda=2k>0$. So, it follows that at the critical point we have a local minimum.
Is now everything correct so far? (Wondering)
 
mathmari said:
Is now everything correct so far? (Wondering)

Yep. All correct now. (Happy)
 
I like Serena said:
Yep. All correct now. (Happy)

Great! (Happy)

By uniquely defined is it mean that we have just one minimum?

How can we show that the local minimum that we found is a global minimum?

(Wondering)
 
mathmari said:
Great! (Happy)

By uniquely defined is it mean that we have just one minimum?

How can we show that the local minimum that we found is a global minimum?

(Wondering)

Yes. Since there is only 1 critical point, there is only 1 internal local extremum, which is a local minimum.
It is a global minimum if there is no lower minimum on the boundary, or, as in this case, the value of $f$ is greater than the minimum as $x\to\infty$.
What happens to $f$ if $x\to\infty$? (Wondering)
 
I like Serena said:
Yes. Since there is only 1 critical point, there is only 1 internal local extremum, which is a local minimum.
It is a global minimum if there is no lower minimum on the boundary, or, as in this case, the value of $f$ is greater than the minimum as $x\to\infty$.
What happens to $f$ if $x\to\infty$? (Wondering)

Ah ok!

Does $f$ tend to infinity if $x$ goes to infinity? (Wondering)
 
mathmari said:
Ah ok!

Does $f$ tend to infinity if $x$ goes to infinity?

Yes. Can you tell why? (Wondering)
 
I like Serena said:
Yes. Can you tell why? (Wondering)

The function must tend to $+\infty$ so that we can tell that the loca minimum that we found is also a global one, or not?

We have that $$f(x)=\sum_{j=1}^k\|x-a_j\|^2$$ If $\|x\|\to \infty$ then $\|x-a_j\|\to \infty$ and so the whole right side tends to $+\infty$ because of the square, or not? (Wondering)
 
  • #10
mathmari said:
The function must tend to $+\infty$ so that we can tell that the loca minimum that we found is also a global one, or not?

We have that $$f(x)=\sum_{j=1}^k\|x-a_j\|^2$$ If $\|x\|\to \infty$ then $\|x-a_j\|\to \infty$ and so the whole right side tends to $+\infty$ because of the square, or not? (Wondering)

Yep. All correct. (Nod)
 
  • #11
I like Serena said:
Yep. All correct. (Nod)

Great! (Yes) The minimum of the function is therefore equal to \begin{equation*}f\left (\frac{1}{k}\sum_{j=1}^ka_{j}\right )=\sum_{j=1}^k\left \|\frac{1}{k}\sum_{j=1}^ka_{j}-a_j\right \|^2\end{equation*} Can we simplify this expression further? I am a bit confused with the two $a_j$'s. Only the first one is in the inner sum, isn't it? But both are in the outer sum? (Wondering)
 
  • #12
mathmari said:
Great! (Yes) The minimum of the function is therefore equal to \begin{equation*}f\left (\frac{1}{k}\sum_{j=1}^ka_{j}\right )=\sum_{j=1}^k\left \|\frac{1}{k}\sum_{j=1}^ka_{j}-a_j\right \|^2\end{equation*} Can we simplify this expression further? I am a bit confused with the two $a_j$'s. Only the first one is in the inner sum, isn't it? But both are in the outer sum? (Wondering)

Indeed. Let's use a different index variable before substituting, say $\ell$.
Then we get:
\begin{equation*}f\left (\frac{1}{k}\sum_{\ell=1}^ka_{\ell}\right )
=\sum_{j=1}^k\left \|\frac{1}{k}\sum_{\ell=1}^ka_{\ell}-a_j\right \|^2
=\sum_{j=1}^k\left \|\sum_{\ell=1}^k \left(\frac{1}{k}a_{\ell}-\delta_{j\ell}a_j\right)\right \|^2
=\sum_{j=1}^k\left \|\sum_{\ell=1}^k \left(\frac{1}{k}-\delta_{j\ell}\right)a_j\right \|^2
\end{equation*}
where $\delta_{ij}$ is the Kronecker delta, don't we? (Wondering)
 
  • #13
I like Serena said:


Indeed. Let's use a different index variable before substituting, say $\ell$.
Then we get:
\begin{equation*}f\left (\frac{1}{k}\sum_{\ell=1}^ka_{\ell}\right )
=\sum_{j=1}^k\left \|\frac{1}{k}\sum_{\ell=1}^ka_{\ell}-a_j\right \|^2
=\sum_{j=1}^k\left \|\sum_{\ell=1}^k \left(\frac{1}{k}a_{\ell}-\delta_{j\ell}a_j\right)\right \|^2
=\sum_{j=1}^k\left \|\sum_{\ell=1}^k \left(\frac{1}{k}-\delta_{j\ell}\right)a_j\right \|^2
\end{equation*}
where $\delta_{ij}$ is the Kronecker delta, don't we? (Wondering)

Ah ok! Thank you! (Mmm)
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
32
Views
3K
Replies
12
Views
4K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K