If we write $z = e^{ix}$, the expression becomes
$$1−\left(\frac 1 {2i}(z-z^{-1})\right)^5−\left(\frac 1 2(z+z^{-1})\right)^5$$
According to Wolfram, this is equal to
$$\frac{(\frac 1{32}+\frac i{32}) (z-1)^2 (z-i)^2 (1+(2-2 i) z-9 i z^2-(12+12 i) z^3-9 z^4-(2-2 i) z^5+i z^6)}{z^5}$$
As an observation, if we set it to zero, we find the roots $z=1$ and $z=i$ (each of multiplicity 2) that translate to $x=0 \pmod{2\pi}$ and $x=\frac \pi 2 \pmod{2\pi}$.
We can rewrite the expression as
$$\frac 1{32}(1+i) (z^{\frac 1 2}-z^{-\frac 1 2})^2 (z^{\frac 1 2}-iz^{-\frac 1 2})^2 (z^{-3}+(2-2 i) z^{-2}-9 i z^{-1}-12(1+i) -9 z-(2-2 i) z^2+i z^3)$$
$$\frac 1{32}(1+i) (z^{\frac 1 2}-z^{-\frac 1 2})^2 (z^{\frac 1 2}-iz^{-\frac 1 2})^2 (i (z^3 - iz^{-3})-2(1-i)(z^2 - z^{-2})-9 (z+i z^{-1})-12(1+i))$$
We can verify that
$$\left\{ \begin{aligned}
z+z^{-1}&=2\cos x \\
z-z^{-1}&=2i\sin x \\
z-i z^{-1}&=(1-i)(\cos x - \sin x) \\
z+iz^{-1}&=(1+i)(\cos x + \sin x)
\end{aligned}\right.$$
So we can further simplify it, which I will do in a later post...
Either way, the important factors for the roots are $(\sin \frac x 2)$ and $(\cos \frac x 2 - \sin \frac x 2)$.