Factorization of an expression

Click For Summary
SUMMARY

The expression $(1+a+\cdots+a^n)^2-a^n$ can be factorized, although the process is not straightforward. The discussion highlights that the coefficients of the expanded form decrease after the term $a^{n+1}$. The proposed factorization involves the product of $(1+a+\cdots+a^{n+1})$ and $(a^{n-1}+\cdots+1)$. This insight is crucial for understanding the structure of the polynomial.

PREREQUISITES
  • Understanding of polynomial expressions and their expansions
  • Familiarity with geometric series and their summation
  • Knowledge of algebraic factorization techniques
  • Basic skills in manipulating algebraic identities
NEXT STEPS
  • Study the properties of geometric series, specifically the formula for summing series
  • Learn advanced polynomial factorization methods, including synthetic division
  • Explore the implications of coefficient behavior in polynomial expressions
  • Investigate related algebraic identities and their applications in factorization
USEFUL FOR

Mathematicians, algebra students, and educators looking to deepen their understanding of polynomial factorization and expressions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Factorize the expression $(1+a+\cdots+a^n)^2-a^n$.
 
Mathematics news on Phys.org
anemone said:
Factorize the expression $(1+a+\cdots+a^n)^2-a^n$.

$(1+..+a^n)^2=1+2a+..+(n+1)a^n+na^{n+1}+..+a^{2n}$.

So $(1+a+\cdots+a^n)^2-a^n=1+..+na^n+na^{n+1}+..+a^{2n}=(1+a+..+a^{n+1})(a^{n-1}+..+1)$
 
Last edited by a moderator:
Fermat said:
$(1+..+a^n)^2=1+2a+..+(n+1)a^n+na^{n+1}+..+a^{2n}$.

So $(1+a+\cdots+a^n)^2-a^n=1+..+na^n+na^{n+1}+..+a^{2n}=(1+a+..+a^{n+1})(a^{n-1}+..+1)$

Thanks for participating, Fermat. But I don't think it's straightforward to conclude that $1+..+na^n+na^{n+1}+..+a^{2n}$ is actually the product of $(1+a+..+a^{n+1})$ and $(a^{n-1}+..+1)$.
 
let f(a) =$ (1+ a+ \cdots + a^n)^2 - a^n$

so f(a)(a-1)^2 = $(a^{n+1} -1)^2 - a^n(a-1)^2$
= $(a^{n+1}-1)^2 - a^n(a-1)^2$
= $a^{2n+2}- 2 a^{n+1} + 1 - a^n(a^2 - 2a + 1)$
= $a^{2n+2} - a^{n+2} - a^n + 1$
= $(a^{n+2} - 1)(a^n-1)$

so f(a)=$((a^{n+2} -1) / (a-1) * (a^n - 1)/(a-1)) $
= $ ( 1 + a + \cdots + a^{n+1}) ( 1 + a + \cdots + a^ {n-1})$
 
Last edited:
anemone said:
Thanks for participating, Fermat. But I don't think it's straightforward to conclude that $1+..+na^n+na^{n+1}+..+a^{2n}$ is actually the product of $(1+a+..+a^{n+1})$ and $(a^{n-1}+..+1)$.

No it's not straightforward, but it is suggested by the fact that the coefficients decrease after $a^{n+1}$.
 
Fermat said:
No it's not straightforward, but it is suggested by the fact that the coefficients decrease after $a^{n+1}$.

Oh okay.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
986
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K