MHB Factorization of an expression

AI Thread Summary
The expression $(1+a+\cdots+a^n)^2-a^n$ is under discussion for factorization. Participants note that while it may not be straightforward to conclude the factorization, the decreasing coefficients after $a^{n+1}$ suggest a possible product form. The conversation highlights the complexity of the factorization process and the need for careful analysis. Overall, the factorization remains a challenging problem that requires deeper exploration.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Factorize the expression $(1+a+\cdots+a^n)^2-a^n$.
 
Mathematics news on Phys.org
anemone said:
Factorize the expression $(1+a+\cdots+a^n)^2-a^n$.

$(1+..+a^n)^2=1+2a+..+(n+1)a^n+na^{n+1}+..+a^{2n}$.

So $(1+a+\cdots+a^n)^2-a^n=1+..+na^n+na^{n+1}+..+a^{2n}=(1+a+..+a^{n+1})(a^{n-1}+..+1)$
 
Last edited by a moderator:
Fermat said:
$(1+..+a^n)^2=1+2a+..+(n+1)a^n+na^{n+1}+..+a^{2n}$.

So $(1+a+\cdots+a^n)^2-a^n=1+..+na^n+na^{n+1}+..+a^{2n}=(1+a+..+a^{n+1})(a^{n-1}+..+1)$

Thanks for participating, Fermat. But I don't think it's straightforward to conclude that $1+..+na^n+na^{n+1}+..+a^{2n}$ is actually the product of $(1+a+..+a^{n+1})$ and $(a^{n-1}+..+1)$.
 
let f(a) =$ (1+ a+ \cdots + a^n)^2 - a^n$

so f(a)(a-1)^2 = $(a^{n+1} -1)^2 - a^n(a-1)^2$
= $(a^{n+1}-1)^2 - a^n(a-1)^2$
= $a^{2n+2}- 2 a^{n+1} + 1 - a^n(a^2 - 2a + 1)$
= $a^{2n+2} - a^{n+2} - a^n + 1$
= $(a^{n+2} - 1)(a^n-1)$

so f(a)=$((a^{n+2} -1) / (a-1) * (a^n - 1)/(a-1)) $
= $ ( 1 + a + \cdots + a^{n+1}) ( 1 + a + \cdots + a^ {n-1})$
 
Last edited:
anemone said:
Thanks for participating, Fermat. But I don't think it's straightforward to conclude that $1+..+na^n+na^{n+1}+..+a^{2n}$ is actually the product of $(1+a+..+a^{n+1})$ and $(a^{n-1}+..+1)$.

No it's not straightforward, but it is suggested by the fact that the coefficients decrease after $a^{n+1}$.
 
Fermat said:
No it's not straightforward, but it is suggested by the fact that the coefficients decrease after $a^{n+1}$.

Oh okay.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-sln2)+e^(-sln3)+e^(-sln4)+... , Re(s)>1 If we regards it as some function got from Laplace transformation, and let this real function be ζ(x), that means L[ζ(x)]=ζ(s), then: ζ(x)=L^-1[ζ(s)]=δ(x)+δ(x-ln2)+δ(x-ln3)+δ(x-ln4)+... , this represents a series of Dirac delta functions at the points of x=0, ln2, ln3, ln4, ... , It may be still difficult to understand what ζ(x) means, but once it is integrated, the truth is clear...

Similar threads

Replies
3
Views
989
Replies
3
Views
2K
Replies
3
Views
893
Replies
7
Views
2K
Replies
3
Views
2K
Replies
2
Views
1K
Replies
4
Views
2K
Back
Top