Factorize 6(x^5+y^5+z^5)-5(x^2+y^2+z^2)(x^3+y^3+z^3)

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The expression $6(x^5+y^5+z^5)-5(x^2+y^2+z^2)(x^3+y^3+z^3)$ can be factorized into polynomials of lower degree with integer coefficients. The factorization process involves recognizing patterns in symmetric polynomials and applying algebraic identities. The final factorization is $ (x+y+z)(x^2+y^2+z^2-xy-yz-zx)(6(x^2+y^2+z^2)-5(x+y+z)(x^2+y^2+z^2))$. This result is crucial for simplifying complex polynomial expressions in algebra.

PREREQUISITES
  • Understanding of symmetric polynomials
  • Familiarity with polynomial factorization techniques
  • Knowledge of algebraic identities
  • Experience with integer coefficients in polynomial expressions
NEXT STEPS
  • Study symmetric polynomial identities
  • Practice polynomial factorization with integer coefficients
  • Explore advanced algebraic techniques for simplifying expressions
  • Learn about the applications of polynomial factorization in algebraic geometry
USEFUL FOR

Mathematicians, algebra students, and educators looking to deepen their understanding of polynomial factorization and symmetric functions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Factorize $6(x^5+y^5+z^5)-5(x^2+y^2+z^2)(x^3+y^3+z^3)$ as a product of polynomials of lower degree with integer coefficients.
 
Mathematics news on Phys.org
anemone said:
Factorize $6(x^5+y^5+z^5)-5(x^2+y^2+z^2)(x^3+y^3+z^3)$ as a product of polynomials of lower degree with integer coefficients.
$f(x,y,z) = 6(x^5+y^5+z^5)-5(x^2+y^2+z^2)(x^3+y^3+z^3)$ is a homogenous symmetric polynomial of degree $5$. According to the theory of symmetric polynomials, it can be uniquely expressed in terms of the elementary symmetric polynomials $e_1,e_2,e_3$, where $$e_1 = x+y+z,\qquad e_2 = xy+yz+zx, \qquad e_3 = xyz.$$ To write $f(x,y,z)$ in that form, use Newton's identities, which say that if $p_k = x^k+y^k+z^k$ then $$p_1=e_1,\\ p_2 = e_1^2 - e_2,\\p_3 = e_1^3 - 3e_1e_2 + 3e_3,\\ p_k= e_1p_{k-1} - e_2p_{k-2} + e_3p_{k-3}\quad (k>3).$$ Then $$\begin{aligned}p_5& = e_1p_4 - e_2p_3 + e_3p_2\\ &= e_1(e_1p_3-e_2p_2+e_3p_1) - e_2p_3 + e_3p_2\\ &= (e_1^2-e_2)p_3 + (e_3-e_1e_2)p_2 + e_1e_3p_1\\ &=(e_1^2-e_2)(e_1^3 - 3e_1e_2 + 3e_3) + (e_3-e_1e_2)(e_1^2 - 2e_2) + e_1^2e_3\\ &= e_1^5 - 5e_1^3e_2 + 5e_1^2e_3 + 5e_1e_2^2 - 5e_2e_3.\end{aligned}$$ Therefore $$6p_5 = 6e_1^5 - 30e_1^3e_2 + 30e_1^2e_3 + 30e_1e_2^2 - 30e_2e_3.\qquad(*)$$ Next, $p_2p_3 = (e_1^2 - e_2)(e_1^3 - 3e_1e_2 + 3e_3) = e_1^5 - 5e_1^3e_2 + 3e_1^2e_3 + 6e_1e_2^2 - 6e_2e_3$, and so $$5p_2p_3 = 5e_1^5 - 25e_1^3e_2 + 15e_1^2e_3 + 30e_1e_2^2 - 30e_2e_3.\qquad(**)$$ From (*) and (**) it follows that $$f(x,y,z) = 6p_5 - 5p_2p_3 = e_1^5 - 5e_1^3e_2 + 15e_1^2e_3 = e_1^2(e_1^3 - 5e_1e_2 + 15e_3).$$ In terms of $x,y,z$, that says that $$6(x^5+y^5+z^5)-5(x^2+y^2+z^2)(x^3+y^3+z^3) = (x+y+z)^2\bigl(x^3+y^3+z^3 - 2x^2(y+z) - 2y^2(x+z) - 2z^2(x+y) + 6xyz\bigr)$$ (as you can verify by multiplying out the brackets on both sides, if you are so inclined).
 
Last edited:

Similar threads

Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 59 ·
2
Replies
59
Views
79K