MHB Factorize 6(x^5+y^5+z^5)-5(x^2+y^2+z^2)(x^3+y^3+z^3)

  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
The expression 6(x^5+y^5+z^5)-5(x^2+y^2+z^2)(x^3+y^3+z^3) is analyzed for factorization into lower-degree polynomials with integer coefficients. Participants discuss various methods and approaches to simplify the expression effectively. The focus is on identifying common factors and applying polynomial identities to achieve the desired factorization. Ultimately, the goal is to present the expression in a more manageable form while adhering to the constraints of integer coefficients. Successful factorization enhances understanding of polynomial relationships and algebraic manipulation.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Factorize $6(x^5+y^5+z^5)-5(x^2+y^2+z^2)(x^3+y^3+z^3)$ as a product of polynomials of lower degree with integer coefficients.
 
Mathematics news on Phys.org
anemone said:
Factorize $6(x^5+y^5+z^5)-5(x^2+y^2+z^2)(x^3+y^3+z^3)$ as a product of polynomials of lower degree with integer coefficients.
$f(x,y,z) = 6(x^5+y^5+z^5)-5(x^2+y^2+z^2)(x^3+y^3+z^3)$ is a homogenous symmetric polynomial of degree $5$. According to the theory of symmetric polynomials, it can be uniquely expressed in terms of the elementary symmetric polynomials $e_1,e_2,e_3$, where $$e_1 = x+y+z,\qquad e_2 = xy+yz+zx, \qquad e_3 = xyz.$$ To write $f(x,y,z)$ in that form, use Newton's identities, which say that if $p_k = x^k+y^k+z^k$ then $$p_1=e_1,\\ p_2 = e_1^2 - e_2,\\p_3 = e_1^3 - 3e_1e_2 + 3e_3,\\ p_k= e_1p_{k-1} - e_2p_{k-2} + e_3p_{k-3}\quad (k>3).$$ Then $$\begin{aligned}p_5& = e_1p_4 - e_2p_3 + e_3p_2\\ &= e_1(e_1p_3-e_2p_2+e_3p_1) - e_2p_3 + e_3p_2\\ &= (e_1^2-e_2)p_3 + (e_3-e_1e_2)p_2 + e_1e_3p_1\\ &=(e_1^2-e_2)(e_1^3 - 3e_1e_2 + 3e_3) + (e_3-e_1e_2)(e_1^2 - 2e_2) + e_1^2e_3\\ &= e_1^5 - 5e_1^3e_2 + 5e_1^2e_3 + 5e_1e_2^2 - 5e_2e_3.\end{aligned}$$ Therefore $$6p_5 = 6e_1^5 - 30e_1^3e_2 + 30e_1^2e_3 + 30e_1e_2^2 - 30e_2e_3.\qquad(*)$$ Next, $p_2p_3 = (e_1^2 - e_2)(e_1^3 - 3e_1e_2 + 3e_3) = e_1^5 - 5e_1^3e_2 + 3e_1^2e_3 + 6e_1e_2^2 - 6e_2e_3$, and so $$5p_2p_3 = 5e_1^5 - 25e_1^3e_2 + 15e_1^2e_3 + 30e_1e_2^2 - 30e_2e_3.\qquad(**)$$ From (*) and (**) it follows that $$f(x,y,z) = 6p_5 - 5p_2p_3 = e_1^5 - 5e_1^3e_2 + 15e_1^2e_3 = e_1^2(e_1^3 - 5e_1e_2 + 15e_3).$$ In terms of $x,y,z$, that says that $$6(x^5+y^5+z^5)-5(x^2+y^2+z^2)(x^3+y^3+z^3) = (x+y+z)^2\bigl(x^3+y^3+z^3 - 2x^2(y+z) - 2y^2(x+z) - 2z^2(x+y) + 6xyz\bigr)$$ (as you can verify by multiplying out the brackets on both sides, if you are so inclined).
 
Last edited: