MHB Farhan and Junhao score points

  • Thread starter Thread starter Johnx1
  • Start date Start date
  • Tags Tags
    Points
Click For Summary
Farhan and Junhao initially had the same number of points in a game. After Farhan scored an additional 470 points and Junhao scored 50 points, Farhan had three times as many points as Junhao. The correct equation to solve this is O + 470 = 3(O + 50), where O represents the original points each had. Solving this equation reveals that both Farhan and Junhao initially had 160 points. The discussion emphasizes the importance of using consistent variable representation in algebraic equations.
Johnx1
Messages
48
Reaction score
0
Farhan and Junhao had the same number of points in a game. After Farhan got another 470 points and Junhao got another 50 points, Farhan had 3 times as many points as Junhao. How many points did each of them have at first?

My answer:

Farhan = F
Junhao = J

We know F = H,
F = F + 470
J = J + 50
F = 3J

so then I did,

F + 470 = J + 50

3J + 470 = J + 50

J = -210.

Then I pluged it back into 3J + 470 = J + 50

so I get -160 = -160.

I'm not sure what I did wrong. Also, I know the answer is 160.
 
Mathematics news on Phys.org
Johnx said:
Farhan and Junhao had the same number of points in a game. After Farhan got another 470 points and Junhao got another 50 points, Farhan had 3 times as many points as Junhao. How many points did each of them have at first?

My answer:

Farhan = F
Junhao = J

We know F = H,

Okay, you are good up to here. So in fact we really only need one variable...let's let \(O\) by the number of points both originally had. So, next let's look at the statement:

After Farhan got another 470 points and Junhao got another 50 points, Farhan had 3 times as many points as Junhao.

After Farhan got another 470 points, his number of points is:

$$O+470$$

After Junhao got another 50 points, his number of points is:

$$O+50$$

And "Farhan had 3 times as many points as Junhao" then means we can write:

$$O+470=3(O+50)$$

We can now solve this equation to find \(O\), which is what the question asks us to find. What do you get?
 
MarkFL said:
let \(O\) by the number of points both originally had. So, next let's look at the statement:

After Farhan got another 470 points and Junhao got another 50 points, Farhan had 3 times as many points as Junhao.

After Farhan got another 470 points, his number of points is:

$$O+470$$

After Junhao got another 50 points, his number of points is:

$$O+50$$

And "Farhan had 3 times as many points as Junhao" then means we can write:

$$O+470=3(O+50)$$

We can now solve this equation to find \(O\), which is what the question asks us to find. What do you get?

So then I did:

F = H
F = O + 470
H = O + 50

We also know F = 3(J)O+470=3(O+50)

O = 160

Thank you.
 
Johnx said:
Farhan and Junhao had the same number of points in a game. After Farhan got another 470 points and Junhao got another 50 points, Farhan had 3 times as many points as Junhao. How many points did each of them have at first?

My answer:

Farhan = F
Junhao = J
Okay, good. However, I would have said "F is the number of points Farhan scored and J is the number of points[/g] Junhao scored. "Farhan" and "Junhao" are people[/g] not numbers!

We know F = H,
Where did "H" come from? Did you mean "J"?

F = F + 470
J = J + 50
No! you are using "F" to represent the number of points Farhan had initially. You cannot use the same letter to represent the number of points Farhan had later. And, algebraically, "F= F+ 470", subtracting "F" from both sides, gives 0= 470 which is certainly not true!

F = 3J
Rather F+ 470= 3(J+ 50)

so then I did,

F + 470 = J + 50

3J + 470 = J + 50

J = -210.

Then I pluged it back into 3J + 470 = J + 50

so I get -160 = -160.

I'm not sure what I did wrong. Also, I know the answer is 160.
You had, above, F+ 470= 3(J+ 50) but F= J so you can use just a single letter to represent that number- say F+ 470= 3(F+ 50)= 3F+ 150.

3F- F= 470- 150
2F= 320
F= 320/2= 160
 
Country Boy said:
No! you are using "F" to represent the number of points Farhan had initially. You cannot use the same letter to represent the number of points Farhan had later. And, algebraically, "F= F+ 470", subtracting "F" from both sides, gives 0= 470 which is certainly not true!

thank you for pointing that out :-)
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
5K
  • · Replies 36 ·
2
Replies
36
Views
7K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
3
Views
1K
Replies
1
Views
2K
Replies
1
Views
6K