- #1
- 56
- 0
For two identical particles, we have
[itex]|\psi(x_1,x_2,t)|^2=|\psi(x_2,x_1,t)|^2[/itex]
thus [itex]\psi(x_1,x_2,t)=e^{i\phi}\psi(x_2,x_1,t)[/itex]
also [itex]\psi(x_2,x_1,t)=e^{i\phi}\psi(x_1,x_2,t)[/itex]
that means [itex]e^{2i\phi}=1[/itex] or [itex]e^{i\phi}=\pm 1[/itex]
For fermions
[itex]\psi(x_2,x_1,t)=-\psi(x_1,x_2,t)[/itex]
Why does it happen to be different when we just switch the position of these particles?
[itex]|\psi(x_1,x_2,t)|^2=|\psi(x_2,x_1,t)|^2[/itex]
thus [itex]\psi(x_1,x_2,t)=e^{i\phi}\psi(x_2,x_1,t)[/itex]
also [itex]\psi(x_2,x_1,t)=e^{i\phi}\psi(x_1,x_2,t)[/itex]
that means [itex]e^{2i\phi}=1[/itex] or [itex]e^{i\phi}=\pm 1[/itex]
For fermions
[itex]\psi(x_2,x_1,t)=-\psi(x_1,x_2,t)[/itex]
Why does it happen to be different when we just switch the position of these particles?