MHB Fernet-Serrat equations and vector calculus

Dustinsfl
Messages
2,217
Reaction score
5
I have shown the first two equality and I am working on the showing the 1st equals the 3rd.

\begin{alignat*}{4}
\frac{1}{\rho}\hat{\mathbf{{n}}} &= \frac{d\hat{\mathbf{{u}}}}{ds}
&{}= \frac{\dot{\hat{\mathbf{{u}}}}}{\dot{s}}
&{}= \left((\dot{\mathbf{r}} \cdot\dot{\mathbf{r}})\ddot{\mathbf{r}} -
(\dot{\mathbf{r}}\cdot\ddot{\mathbf{r}}) \dot{\mathbf{r}}\right)
\frac{1}{\lvert\dot{r}\rvert^4}
\end{alignat*}



$$
\frac{1}{\rho}\hat{\mathbf{{n}}} = \frac{\dot{\hat{\mathbf{{u}}}}}{\dot{s}}
$$
We know that $\mathbf{v} = \frac{ds}{dt}\frac{dr}{ds}$ where $\dot{s} = v$ and $\hat{\mathbf{u}} = \frac{dr}{ds}$.

So $\mathbf{v} = v\hat{\mathbf{u}}\iff \dot{\hat{\mathbf{u}}} = \frac{1}{v}\frac{d\mathbf{v}}{dt}$.

Then $\frac{\dot{\hat{\mathbf{{u}}}}}{\dot{s}} = \frac{1}{v^2}\frac{d\mathbf{v}}{dt}$.

I know that
$$
\frac{d\mathbf{v}}{dt} = \frac{dv}{dt}\hat{\mathbf{u}} + \frac{v^2}{\rho}\hat{\mathbf{n}}.
$$
Then $\frac{\dot{\hat{\mathbf{{u}}}}}{\dot{s}} = \frac{1}{v^2}\frac{dv}{dt}\hat{\mathbf{u}} + \frac{1}{\rho}\hat{\mathbf{n}}$.
Therefore, $\frac{1}{v^2}\frac{dv}{dt}\hat{\mathbf{u}} = 0$ but how do I show that this is $0$?
 
Last edited:
Mathematics news on Phys.org
dwsmith said:
So $\mathbf{v} = v\hat{\mathbf{u}}\iff \dot{\hat{\mathbf{u}}} = \frac{1}{v}\frac{d\mathbf{v}}{dt}$.

You need the product rule here.
That is:
$$\mathbf{v} = v\hat{\mathbf{u}} \Rightarrow \dot{\hat{\mathbf{u}}} = \frac{1}{v}\frac{d\mathbf{v}}{dt} - \frac{\dot v}{v^2}\mathbf v$$

The additional term cancels at the end.
 
I like Serena said:
You need the product rule here.
That is:
$$\mathbf{v} = v\hat{\mathbf{u}} \Rightarrow \dot{\hat{\mathbf{u}}} = \frac{1}{v}\frac{d\mathbf{v}}{dt} - \frac{\dot v}{v^2}\mathbf v$$

The additional term cancels at the end.

How do I show the final equality? Convert to the vector triple product? Use Levi-Civita?

So I wrote the last term as $\dot{\mathbf{r}}\times\ddot{\mathbf{r}}\times\dot{\mathbf{r}}$ and used the fact that $\ddot{\mathbf{r}} = \dot{\mathbf{r}}\times\mathbf{c} \times\mathbf{r}$ where $\mathbf{c}$ is a constant vector.
\begin{align}
\dot{\mathbf{r}}\times\ddot{\mathbf{r}} \times\dot{\mathbf{r}} &=
\dot{\mathbf{r}}\times\dot{\mathbf{r}}\times \mathbf{c} \times\mathbf{r}\times\dot{\mathbf{r}}\\
&= \mathbf{c}\times\mathbf{r}\times\dot{\mathbf{r}}\\
&= \dot{\mathbf{r}}\times\mathbf{c}\times\mathbf{r}\\
&= \ddot{\mathbf{r}}
\end{align}
Then $\ddot{\mathbf{r}} = \left(\frac{ds}{dt}\right)^2\frac{d^2\mathbf{r}}{ds^2} = \frac{v^2}{\rho}\hat{\mathbf{n}}$.
Finally, $\frac{1}{\rho}\hat{\mathbf{n}} = \frac{v^2}{\lvert v\rvert^4\rho} \hat{\mathbf{n}} = \frac{1}{\rho} \hat{\mathbf{n}}$
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top