Fernet-Serrat equations and vector calculus

Click For Summary
SUMMARY

The discussion focuses on the derivation of the Fernet-Serrat equations using vector calculus, specifically demonstrating the equality between the first and third equations. The key relationship established is that the normal vector $\hat{\mathbf{n}}$ is expressed in terms of the velocity vector $\mathbf{v}$ and its derivatives, leading to the conclusion that $\frac{1}{\rho}\hat{\mathbf{n}} = \frac{1}{\rho} \hat{\mathbf{n}}$. The product rule is essential in this derivation, particularly in handling the terms involving $\dot{\hat{\mathbf{u}}}$ and $\dot{v}$. The use of vector triple products and the Levi-Civita symbol is also highlighted as a method to simplify the expressions.

PREREQUISITES
  • Understanding of vector calculus concepts, including derivatives and vector products.
  • Familiarity with the Fernet-Serrat equations and their applications in physics.
  • Knowledge of the product rule in calculus.
  • Basic understanding of the Levi-Civita symbol and its role in vector operations.
NEXT STEPS
  • Study the application of the product rule in vector calculus.
  • Learn about the Levi-Civita symbol and its use in simplifying vector equations.
  • Explore the implications of the Fernet-Serrat equations in mechanics and physics.
  • Investigate advanced topics in vector calculus, such as vector fields and their applications.
USEFUL FOR

Mathematicians, physicists, and engineering students who are working with vector calculus and its applications in mechanics, particularly those interested in the Fernet-Serrat equations and their derivations.

Dustinsfl
Messages
2,217
Reaction score
5
I have shown the first two equality and I am working on the showing the 1st equals the 3rd.

\begin{alignat*}{4}
\frac{1}{\rho}\hat{\mathbf{{n}}} &= \frac{d\hat{\mathbf{{u}}}}{ds}
&{}= \frac{\dot{\hat{\mathbf{{u}}}}}{\dot{s}}
&{}= \left((\dot{\mathbf{r}} \cdot\dot{\mathbf{r}})\ddot{\mathbf{r}} -
(\dot{\mathbf{r}}\cdot\ddot{\mathbf{r}}) \dot{\mathbf{r}}\right)
\frac{1}{\lvert\dot{r}\rvert^4}
\end{alignat*}



$$
\frac{1}{\rho}\hat{\mathbf{{n}}} = \frac{\dot{\hat{\mathbf{{u}}}}}{\dot{s}}
$$
We know that $\mathbf{v} = \frac{ds}{dt}\frac{dr}{ds}$ where $\dot{s} = v$ and $\hat{\mathbf{u}} = \frac{dr}{ds}$.

So $\mathbf{v} = v\hat{\mathbf{u}}\iff \dot{\hat{\mathbf{u}}} = \frac{1}{v}\frac{d\mathbf{v}}{dt}$.

Then $\frac{\dot{\hat{\mathbf{{u}}}}}{\dot{s}} = \frac{1}{v^2}\frac{d\mathbf{v}}{dt}$.

I know that
$$
\frac{d\mathbf{v}}{dt} = \frac{dv}{dt}\hat{\mathbf{u}} + \frac{v^2}{\rho}\hat{\mathbf{n}}.
$$
Then $\frac{\dot{\hat{\mathbf{{u}}}}}{\dot{s}} = \frac{1}{v^2}\frac{dv}{dt}\hat{\mathbf{u}} + \frac{1}{\rho}\hat{\mathbf{n}}$.
Therefore, $\frac{1}{v^2}\frac{dv}{dt}\hat{\mathbf{u}} = 0$ but how do I show that this is $0$?
 
Last edited:
Physics news on Phys.org
dwsmith said:
So $\mathbf{v} = v\hat{\mathbf{u}}\iff \dot{\hat{\mathbf{u}}} = \frac{1}{v}\frac{d\mathbf{v}}{dt}$.

You need the product rule here.
That is:
$$\mathbf{v} = v\hat{\mathbf{u}} \Rightarrow \dot{\hat{\mathbf{u}}} = \frac{1}{v}\frac{d\mathbf{v}}{dt} - \frac{\dot v}{v^2}\mathbf v$$

The additional term cancels at the end.
 
I like Serena said:
You need the product rule here.
That is:
$$\mathbf{v} = v\hat{\mathbf{u}} \Rightarrow \dot{\hat{\mathbf{u}}} = \frac{1}{v}\frac{d\mathbf{v}}{dt} - \frac{\dot v}{v^2}\mathbf v$$

The additional term cancels at the end.

How do I show the final equality? Convert to the vector triple product? Use Levi-Civita?

So I wrote the last term as $\dot{\mathbf{r}}\times\ddot{\mathbf{r}}\times\dot{\mathbf{r}}$ and used the fact that $\ddot{\mathbf{r}} = \dot{\mathbf{r}}\times\mathbf{c} \times\mathbf{r}$ where $\mathbf{c}$ is a constant vector.
\begin{align}
\dot{\mathbf{r}}\times\ddot{\mathbf{r}} \times\dot{\mathbf{r}} &=
\dot{\mathbf{r}}\times\dot{\mathbf{r}}\times \mathbf{c} \times\mathbf{r}\times\dot{\mathbf{r}}\\
&= \mathbf{c}\times\mathbf{r}\times\dot{\mathbf{r}}\\
&= \dot{\mathbf{r}}\times\mathbf{c}\times\mathbf{r}\\
&= \ddot{\mathbf{r}}
\end{align}
Then $\ddot{\mathbf{r}} = \left(\frac{ds}{dt}\right)^2\frac{d^2\mathbf{r}}{ds^2} = \frac{v^2}{\rho}\hat{\mathbf{n}}$.
Finally, $\frac{1}{\rho}\hat{\mathbf{n}} = \frac{v^2}{\lvert v\rvert^4\rho} \hat{\mathbf{n}} = \frac{1}{\rho} \hat{\mathbf{n}}$
 
Last edited:

Similar threads

  • · Replies 12 ·
Replies
12
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
999
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
4K
Replies
3
Views
751
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 6 ·
Replies
6
Views
3K