1. ### Flux in a rotated cylindrical coordinate system

##\vec F= 2x^2y \hat i - y^2 \hat j + 4xz^2 \hat k ## ## \Rightarrow \vec \nabla \cdot \vec F= 4xy-2y+8xz## Let's shift to a rotated cylindrical system with axis on x axis: ##x \to h, y \to \rho cos \phi, z \to \rho sin \phi ## Then our flux, as given by the Divergence theorem is the volume...
2. ### I'm not getting the curl of vector potential equal to magnetic field

In this image of Introduction to Electrodynamics by Griffiths . we have calculated the vector potential as ##\mathbf A = \frac{\mu_0 ~n~I}{2}s \hat{\phi}##. I tried taking its curl but didn't get ##\mathbf B = \mu_0~n~I \hat{z}##. In this thread, I have calculated it like this ...
3. ### How to find the curl of a vector field which points in the theta direction?

I have a vector field which is originallly written as $$\mathbf A = \frac{\mu_0~n~I~r}{2} ~\hat \phi$$ and I translated it like this $$\mathbf A = 0 ~\hat{r},~~ \frac{\mu_0 ~n~I~r}{2} ~\hat{\phi} , ~~0 ~\hat{\theta}$$ (##r## is the distance from origin, ##\phi## is azimuthal angle and...
4. ### Verifying the flux transport theorem

Let ##S_t## be a uniformly expanding hemisphere described by ##x^2+y^2+z^2=(vt)^2, (z\ge0)## I assume by verify they just want me to calculate this for the surface. I guess that ##\textbf{v}=(x/t,y/t,z/t)## because ##v=\frac{\sqrt{x^2+y^2+z^2}}{t}##. The three terms in the parentheses evaluate...
5. ### I Divergence with Chain Rule

I am looking at the derivation for the Entropy equation for a Newtonian Fluid with Fourier Conduction law. At some point in the derivation I see \frac{1}{T} \nabla \cdot (-\kappa \nabla T) = - \nabla \cdot (\frac{\kappa \nabla T}{T}) - \frac{\kappa}{T^2}(\nabla T)^2 K is a constant and T...
6. ### Properties of Four-Vectors

Two four-vectors have the property that ##A^\mu B_\mu = 0## (a) Suppose ##A^\mu A_\mu > 0##. Show that ##B^\mu B_\mu \leq 0## (b) Suppose ##A^\mu A_\mu = 0##. Show that ##B^\mu## is either proportional to ##A^\mu## (that is, ##B^\mu = k A^\mu##) or else ##B^\mu B_\mu < 0##. Part (a) is...
7. ### Magnetic field of vector potential

So I was able to do out the curl in the i and j direction and got 3xz/r5 and 3yz/r5 as expected. However, when I do out the last curl, I do not get 3z2-3r2. I get the following \frac{\partial}{\partial x} \frac{x}{(x^2+y^2+z^2)^\frac{3}{2}} = \frac{-2x^2+y^2+z^2}{(x^2+y^2+z^2)^\frac{5}{2}}...
8. ### Electrodynamics: Vector Calculus Question

Why are the red circled Del operators not combining to become 'Del-squared' to cancel out the second term to give a net result of 0?
9. ### Looking for a bunch of solved Sympy problems (Calculus)

Two weeks ago I had no idea on how to code using Python. Now I have completed an online course on functions, loops and strings. However, in that course I did not practice using the specific library called Sympy. Besides, I will use Python in the Physics-Math background, for solving problems like...
10. ### Volume integral over a gradient (quantum mechanics)

Homework Statement 1) Calculate the density of states for a free particle in a three dimensional box of linear size L. 2) Show that ##\int f \nabla g \, d^3 x=-\int g \nabla f \, d^3 x## provided that ##lim_{r \rightarrow \inf} [f(x)g(x)]=0## 3) Calculate the integral ##\int...
11. ### Python Book for learning Python focusing on vector calculus (matrices, eigenvalues, eigenvectors, etc.)

I am looking for a book for learning Python so as to compute matrices, eigenvalues, eigenvectors, divergence, curl (i.e vector calculus). If you also have online recommendations please feel free to write them.
12. ### I Gauss' Theorem -- Why two different notations are used?

In Mathematical Methods for Physicists, Sixth Edition, Page 60, Section 1.11, the Gauss' theorem is written as: In Mathematical Methods for Physicists, Fifth Edition, Page 61, Section 1.11, the Gauss' theorem is written as: Kindly I would like to know please: 1. What is the difference between...
13. ### I A Question about Unit Vectors of Cylindrical Coordinates

I wrote the equations of the Nabla, the divergence, the curl, and the Laplacian operators in cylindrical coordinates ##(ρ,φ,z)##. I was wondering how to define the direction of the unit vector ##\hat{φ}##. Can we obtain ##\hat{φ}## by evaluating the cross-product of ##\hat{ρ}## and ##\hat{z}##...
14. ### I Why are central force fields irrotational and conservative?

In Mathematical Methods for Physicists, 6th Edition, page 44, Example 1.8.2, the curl of the central force field is zero. 1. Why are central force fields irrotational? 2. Why are central force fields conservative? Any help is much appreciated...
15. ### I A question about writing the notation of the nabla operator

I have a simple question about the notation of the nabla operator in Vector Analysis. The nabla operator is a vector differential operator and it is written as: $$\nabla = \hat{x} \frac {∂} {∂x} + \hat{y} \frac {∂} {∂y} + \hat{z} \frac {∂} {∂z}$$ Is it okay if we accented nabla by a right...
16. ### I Sign mistake when computing integral with differential forms

The question provides the vector field (xy, 2yz, 3zx) and asks me to confirm Stokes' theorem (the vector calc version) but I am trying to use the generalized differential forms version. So, I am trying to integrate \omega = xy\,dx + 2yz\,dy + 3zx\,dz along the following triangular boundary...

30. ### Calculus Multivariable Calc for IPhO

Hi guys, i´m pretty well in calculus 1 and i´m studying for the International Physics Olympiad. So I´d like to know some multivariable calculus books that cover vector calc too, are balanced (proofs are welcome) and emphasizes physical intuitions. Thank you already!