MHB Field extensions and Galois goup

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Field
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $p$ b a prime, $n\in \mathbb{N}$ and let $f=x^{p^n}-1\in \mathbb{F}_p[x]$ be irreducible. Let $a\in \overline{\mathbb{F}}_p$ be a root pf $f$.

We have that $[\mathbb{F}_p(a):\mathbb{F}_p]=p^n$, where $\{1,a,\ldots , a^{p^n-1}\}$ is a basis of $\mathbb{F}_p(a)/\mathbb{F}_p$, so $\mathbb{F}_p(a)=\{c_0+c_1a+\ldots +c_{p^n-1}a^{p^n-1} : c_i\in \mathbb{F}_p\}$. There are $p$ choices for each $c_i$. So, there are $p\cdot p\cdot \ldots \cdot p=p^{p^n}$ choices for $(c_0, c_1, \ldots c_{p^n-1})$. Therefore, we have that $|\mathbb{F}_p(a)|=p^{p^n}$, right? (Wondering)

I want to show that $\mathbb{F}_p(a)$ contains all the roots of $f$.

I holds that every finite extension of a finite field is normal, right? But how can we prove this? (Wondering)

Then I have shown that for each $b\in \mathbb{F}_{p^n}$, $a+b$ is a root of $f$. I have also shown that $\mathbb{F}_{p^n}\leq \mathbb{F}_p(a)$ and $n=p^i$ for some $i\in \{0, 1, \ldots , n\}$.

Then I want to show that $\text{Gal}(\mathbb{F}_p(α)/\mathbb{F}_{p^n} )$ is cyclic and let $\tau$ be a generator. I want to calculate also the order of $\tau$ as a function of $i$.

In the book there is the following corollary:
View attachment 6352

We have that $|\mathbb{F}_{p^n}|=p^n$ and $|\mathbb{F}_p(a)|=p^{p^n}$. From the above we have that $\mathbb{F}_p(α)/\mathbb{F}_{p^n} $ is Galois, $n\mid p^n$, which is true since $n=p^i$. From the theorem we also have that $\text{Gal}(\mathbb{F}_p(α)/\mathbb{F}_{p^n} )$ is cyclic and is generated by the automorphism $\tau (x)=x^{p^n}$.

How can we calculate the order of $\tau$ ? (Wondering)

Then independent from that I want to calculate a simple expression of $\tau^k(a)$.

I have done the following:
Since $\tau$ is a generator of $\text{Gal}(\mathbb{F}_p(α)/\mathbb{F}_{p^n} )$ that means that $\tau$ is a $\mathbb{F}_{p^n}$-automorphism of $\mathbb{F}_p(a)$ that maps to a root of $f$ to an other root, right? (Wondering)

So, we have that $\tau (a)=a+b$. Therefore, we get the following:
$$\tau^2(a)=\tau(a+b)=\tau (a)+\tau (b)=a+b+b=a+2b \\ \tau^3(a)=\tau(\tau^2(a))=\tau (a+2b)=\tau (a)+\tau (2b)=a+b+2b=a+3b \\ \ldots \\ \tau^k(a)=a+kb$$ Is this correct? (Wondering)
The order of $\tau$ is the smallest integer $m$ such that $\tau^m(a)=a\Rightarrow a+mb=a$. Does this imply that $m=p$ ? (Wondering)
 

Attachments

  • galois.PNG
    galois.PNG
    8.7 KB · Views: 117
Physics news on Phys.org
There is a typo at $f$. It should be $f=x^{p^n}-x-1$.
 
mathmari said:
Let $p$ b a prime, $n\in \mathbb{N}$ and let $f=x^{p^n}-x-1\in \mathbb{F}_p[x]$ be irreducible. Let $a\in \overline{\mathbb{F}}_p$ be a root pf $f$.

We have that $[\mathbb{F}_p(a):\mathbb{F}_p]=p^n$, where $\{1,a,\ldots , a^{p^n-1}\}$ is a basis of $\mathbb{F}_p(a)/\mathbb{F}_p$, so $\mathbb{F}_p(a)=\{c_0+c_1a+\ldots +c_{p^n-1}a^{p^n-1} : c_i\in \mathbb{F}_p\}$. There are $p$ choices for each $c_i$. So, there are $p\cdot p\cdot \ldots \cdot p=p^{p^n}$ choices for $(c_0, c_1, \ldots c_{p^n-1})$. Therefore, we have that $|\mathbb{F}_p(a)|=p^{p^n}$, right? (Wondering)

I want to show that $\mathbb{F}_p(a)$ contains all the roots of $f$.
To show that we have to show that the extension $\mathbb{F}_p(a)/\mathbb{F}_p$ is normal, right? (Wondering)

Since $|\mathbb{F}_p(a)|=p^{p^n}$ we get that for each $e\in \mathbb{F}_p(a)$ it holds that $e^{p^{p^n}}=e \Rightarrow e^{p^{p^n}}-e=0$.
So, each element of $ \mathbb{F}_p(a)$ is a root of $x^{p^{p^n}}-x=0$.
From that we don't get yet that $\mathbb{F}_p(a)$ is the spitting field of $x^{p^{p^n}}-x\in \mathbb{F}_p$, do we? (Wondering)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
Replies
21
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
1K
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
800