MHB Field extensions and roots of polynomials

mathgirl1
Messages
21
Reaction score
0
Let F be a field extension of Q (the rationals) with [F:Q] = 24. Prove that the polynomial $$x^5+2x^4-16x^3+6x-10$$ has no roots in F.

Proof:

Let $$a$$ be a root of $$x^5+2x^4-16x^3+6x-10$$. Since the polynomial has degree 5 by theorem we know that $$[Q(a):Q]=5$$. If $$a \in F$$ and $$[F:Q]=24$$ then by theorem we have that $$ [F:Q] = [F:Q(a)][Q(a):Q] \implies 24 = [F:Q(a)] 5 $$ which means that $$ [F:Q(a)] $$can not be an integer which would imply that the polynomial has not roots in F.

I think this is pretty accurate but also seems kind of too simple. Can someone please confirm whether this is correct or give advice to proceed correctly?

Thank you!
 
Physics news on Phys.org
Hi mathgirl,

It's not true that since the polynomial has degree $5$, then $[\Bbb Q(a):\Bbb Q] = 5$ as a direct consequence. What you've missed in your argument is that the polynonmial is irreducible over $\Bbb Q$. Since the polynomial is irreducible of degree $5$, then $[\Bbb Q(a): \Bbb Q] = 5$. The irreducibility may be proven by applying Eisenstein's criterion for the prime $p = 2$.
 
Ah ha! Yes! Thank you very much! I knew I was missing something. Much appreciated!
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top