I am reading "Abstract Algebra: Structures and Applications" by Stephen Lovett ...(adsbygoogle = window.adsbygoogle || []).push({});

I am currently focused on Chapter 7: Field Extensions ... ...

I need help with some remarks of Lovett following Theorem 7.1.12 and Example 7.1.13 on page 326 ...

The remarks by Lovett read as follows:

In the above remarks from Lovett, we read the following:

" ... ... In the quotient ring ##K##, this implies that ##\overline{ a(x) q(x) } = 1##. Thus in ##K, \ a( \alpha ) q( \alpha ) = 1##. ... ... "

My question is as follows:

Can someone please explain exactly why/how it is that ##\overline{ a(x) q(x) } = 1## implies that ##a( \alpha ) q( \alpha ) = 1## ... ... ?

Help will be appreciated ...

Peter

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Field Extensions - Remarks by Lovett - Page 326 ... ...

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**