MHB Field Theory - Algebrais Extensions - D&F - Section 13.2 - Exercise 2, page 529

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
Dummit and Foote Exercise 2, Section 13.2, page 529 reads as follows:

------------------------------------------------------------------------------------------------------------------

2. Let g(x) = x^2 + x -1 and let h(x) = x^3 - x + 1. Obtain fields of 4, 8, 9 and 27 elements by adjoining a root of f(x) to a field F where f(x) = g(x) or h(x) and F = \mathbb F_2 or \mathbb F_3. Write down the multiplication tables for for the fields with 4 and 9 elements and show that the non-zero elements form a cyclic group.

--------------------------------------------------------------------------------------------------------------------

In my first attempt at this exercise I took f(x) = x^2 + x -1 and F = \mathbb F_2

So we have \mathbb F_2 = \{ 0. 1 \} and f(x) as above.

The elements of \mathbb F_2 ( \alpha ), then, are as follows: (see attachment)

0 + 0. \alpha = 0,

1 + 0. \alpha = 1,

0 + 1. \alpha = \alpha,

and 1 + 1. \alpha = 1 + \alphaThe multiplication table can then be composed using the following:

{\alpha}^2 + \alpha - 1 = 0

That is {\alpha}^2 = 1 - \alpha ... ... ... ... ... (1)

So the multiplication table, composed using (1) is as follows: (see attachment)

0 \times 0 = 0 \ , \ 0 \times 1 = 0 \ , \ 0 \times \alpha = 0 \ , \ 0 \times {1 + \alpha} = 0

1 \times 0 = 0 \ , \ 1 \times 1 = 1 \ , \ 1 \times \alpha = \alpha \ , \ 1 \times (1 + \alpha) = (1 + \alpha)

\alpha \times 0 = 0 \ , \ \alpha \times 1 = \alpha \ , \ \alpha \times \alpha = (1 - \alpha) \ , \ \alpha \times (1 + \alpha) = 1

(1 + \alpha) \times 0 = 0 \ , \ (1 + \alpha) \times 1 = (1 + \alpha) \ , (\ 1 + \alpha) \times \alpha = 1 \ , \ (1 + \alpha) \times (1 + \alpha) = (2 + \alpha)So far so good (i think?) but when I test whether the 9 non-zero elements in the multiplication table form a cyclic group they do notFor example if you try a cyclic group for the non-zero elements based on \alpha we find:

{\alpha}^2 = 1 - \alpha (?? should generate another member of the group but does not!)

and

{\alpha}^3 = \alpha (1 - \alpha) = \alpha - {\alpha}^2 = \alpha - (1 - \alpha) = 2\alpha - 1 (?? not an element of the group)

Can anyone help?

Peter

[Note; The above has also been posted on MHF]
 
Last edited:
Physics news on Phys.org
OK, I think you are a bit confused.

If the base field is $F_2 = \{0,1\} = \Bbb Z_2$ with multiplication and addition modulo 2, and our irreducible polynomial is of degree 2 (so that $[F_2(\alpha):F] = 2$), then viewed as a vector space, $F_2(\alpha)$ is isomorphic to $F_2 \times F_2$:

$0 = 0 + 0\alpha \leftrightarrow (0,0)$
$1 = 1 + 0\alpha \leftrightarrow (1,0)$
$\alpha = 0 + 1\cdot\alpha \leftrightarrow (0,1)$
$\alpha + 1 = 1 + 1\cdot\alpha \leftrightarrow (1,1)$

This clearly has just 4 elements, and thus just THREE non-zero elements. I claim $\alpha$ generates the non-zero elements:

$\alpha^2 = 1 - \alpha$ (since $\alpha^2 + \alpha - 1 = 0$). But in a field $F$ of characteristic 2, $-u = u$ for ALL $u \in F$, since:

$u+u = 1\cdot u + 1\cdot u = (1 + 1)u = 0u = 0$,

Thus $1 - \alpha = 1 + \alpha = \alpha + 1$.

Finally:

$\alpha^3 = \alpha(\alpha^2) = \alpha(\alpha + 1) = \alpha^2 + \alpha = (\alpha + 1) + \alpha$

$= (\alpha + \alpha) + 1 = 0 + 1 = 1$, which shows that $\alpha$ is of order 3.
 
Deveno said:
OK, I think you are a bit confused.

If the base field is $F_2 = \{0,1\} = \Bbb Z_2$ with multiplication and addition modulo 2, and our irreducible polynomial is of degree 2 (so that $[F_2(\alpha):F] = 2$), then viewed as a vector space, $F_2(\alpha)$ is isomorphic to $F_2 \times F_2$:

$0 = 0 + 0\alpha \leftrightarrow (0,0)$
$1 = 1 + 0\alpha \leftrightarrow (1,0)$
$\alpha = 0 + 1\cdot\alpha \leftrightarrow (0,1)$
$\alpha + 1 = 1 + 1\cdot\alpha \leftrightarrow (1,1)$

This clearly has just 4 elements, and thus just THREE non-zero elements. I claim $\alpha$ generates the non-zero elements:

$\alpha^2 = 1 - \alpha$ (since $\alpha^2 + \alpha - 1 = 0$). But in a field $F$ of characteristic 2, $-u = u$ for ALL $u \in F$, since:

$u+u = 1\cdot u + 1\cdot u = (1 + 1)u = 0u = 0$,

Thus $1 - \alpha = 1 + \alpha = \alpha + 1$.

Finally:

$\alpha^3 = \alpha(\alpha^2) = \alpha(\alpha + 1) = \alpha^2 + \alpha = (\alpha + 1) + \alpha$

$= (\alpha + \alpha) + 1 = 0 + 1 = 1$, which shows that $\alpha$ is of order 3.
Thanks for the help, Deveno

Just working on this nowPeter(PS sorry for delay ... Commitments to my day job intervened unfortunately :-). )
 
Peter said:
Thanks for the help, Deveno

Just working on this nowPeter(PS sorry for delay ... Commitments to my day job intervened unfortunately :-). )

I have worked through the post.. It was very helpful.

I am assuming that where you write [FONT=MathJax_Math]F[FONT=MathJax_Main]2[FONT=MathJax_Main]([FONT=MathJax_Math]α[FONT=MathJax_Main]) is isomorphic to [FONT=MathJax_Math]F[FONT=MathJax_Main]2[FONT=MathJax_Main]×[FONT=MathJax_Math]F[FONT=MathJax_Main]2 that you are not contesting the fact that $$ \mathbb{F}_2 ( \alpha ) = \{ a_0 + a_1 \alpha \ | \ a_0, a_1 \in \mathbb{F}_2 $$ - but are just expressing the fact that $$ \mathbb{F}_2 ( \alpha ) \cong \mathbb{F}_2 \times \mathbb{F}_2 $$ (I do not think you are contesting this - but just checking with you)

I have used the points you have made regarding the fact that $$ \mathbb{F}_2 $$ has characteristic 2 to upgrade my multiplication table for $$ \mathbb{F}_2 ( \alpha ) $$ - I have attached the multiplication table as I had it before - labelled previous post - and the new multiplication table - labelled new post.

Can someone please confirm that the new multiplication table is correct.

Peter
 
Yes, it is correct. Note we have two ways to view this finite field:

1) As a vector space over $F_2$, this makes it easy to add elements.

2) As $\{0\} \cup \langle \alpha \rangle$, this makes it easy to multiply elements.

To pass between the two ways of looking at a finite field requires finding a generator, or primitive element, so we can create a "discrete log table". This is not always an easy task.

Now do the same thing with $F_3$, which will be a lot more interesting (and give you a better idea of how bad things can get when $p$ is large in the field $F_p$).
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top