MHB Field Theory: Nicholson Alg Ext, Sec 6.2 Ex 13 Pg 282 Explained

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Nicholson: Introduction to Abstract Algebra, Section 6.2 Algebraic Extensions.

Example 13 on page 282 (see attachment) reads as follows:

"If u = \sqrt[3]{2} show that \mathbb{Q}(u) = \mathbb{Q}(u^2)"

In the third line of the explanation - see page 282 of attachment - we read:

"But [\mathbb{Q}(u^2) \ : \ \mathbb{Q}] \ne 1 because u^2 \notin \mathbb{Q} ... ... "

Can someone explain why it follows that u^2 \notin \mathbb{Q} \Longrightarrow [\mathbb{Q}(u^2) \ : \ \mathbb{Q}] \ne 1

Peter

[This has also been posted on MHF]
 
Physics news on Phys.org
Peter said:
I am reading Nicholson: Introduction to Abstract Algebra, Section 6.2 Algebraic Extensions.

Example 13 on page 282 (see attachment) reads as follows:

"If u = \sqrt[3]{2} show that \mathbb{Q}(u) = \mathbb{Q}(u^2)"

In the third line of the explanation - see page 282 of attachment - we read:

"But [\mathbb{Q}(u^2) \ : \ \mathbb{Q}] \ne 1 because u^2 \notin \mathbb{Q} ... ... "

Can someone explain why it follows that u^2 \notin \mathbb{Q} \Longrightarrow [\mathbb{Q}(u^2) \ : \ \mathbb{Q}] \ne 1

Peter

[This has also been posted on MHF]
We prove the following general fact.

Let $E$ be an extension of a field $F$.
Let $a\in E$ be such that $[F(a):F]=1$.
Then $a\in F$.

What is the minimal polynomial of $a$ over $F$? It's degree is $1$. So say $x-b\in F[x]$ is the minimal polynomial of $a$ over $F$.
Now we show that $f(a)\in F$ for any polynomial $f(x)\in F[x]$. Note that $f(x)=(x-a)g(x)+r(x)$ for some $r(x)\in F[x]$ with $\deg r(x)=1$. Thus $f(a)=r(a)$. Since $\deg r(x)=1$, $r(a)\in F$ and hence $f(a)\in F$.
We also knew that $F(a)=\{f(a):f(x)\in F[x]\}$ since $a$ is algebraic over $F$.
So we conclude $F(a)=F$ and hence $a\in F$.

Using the above discussion you can easily solve your original problem.
 
caffeinemachine said:
We prove the following general fact.

Let $E$ be an extension of a field $F$.
Let $a\in E$ be such that $[F(a):F]=1$.
Then $a\in F$.

What is the minimal polynomial of $a$ over $F$? It's degree is $1$. So say $x-b\in F[x]$ is the minimal polynomial of $a$ over $F$.
Now we show that $f(a)\in F$ for any polynomial $f(x)\in F[x]$. Note that $f(x)=(x-a)g(x)+r(x)$ for some $r(x)\in F[x]$ with $\deg r(x)=1$. Thus $f(a)=r(a)$. Since $\deg r(x)=1$, $r(a)\in F$ and hence $f(a)\in F$.
We also knew that $F(a)=\{f(a):f(x)\in F[x]\}$ since $a$ is algebraic over $F$.
So we conclude $F(a)=F$ and hence $a\in F$.

Using the above discussion you can easily solve your original problem.
Thanks caffeinemachine, most helpful of you. Your post enables me to progress on with Field Theory.

Peter
 
caffeinemachine said:
We prove the following general fact.

Let $E$ be an extension of a field $F$.
Let $a\in E$ be such that $[F(a):F]=1$.
Then $a\in F$.

What is the minimal polynomial of $a$ over $F$? It's degree is $1$. So say $x-b\in F[x]$ is the minimal polynomial of $a$ over $F$.
Now we show that $f(a)\in F$ for any polynomial $f(x)\in F[x]$. Note that $f(x)=(x-a)g(x)+r(x)$ for some $r(x)\in F[x]$ with $\deg r(x)=1$. Thus $f(a)=r(a)$. Since $\deg r(x)=1$, $r(a)\in F$ and hence $f(a)\in F$.
We also knew that $F(a)=\{f(a):f(x)\in F[x]\}$ since $a$ is algebraic over $F$.
So we conclude $F(a)=F$ and hence $a\in F$.

Using the above discussion you can easily solve your original problem.

Hi caffeinemachine,

I was just revising and reflecting on your post and have a couple of points needing clarification.

You write:

"So say $$ x-b\in F[x] $$ is the minimal polynomial of a over F."

Do you mean:

"So say $$ x-a \in F[x] $$ is the minimal polynomial of a over F."?
Further, later in the post you write:

"Note that $$ f(x)=(x-a)g(x)+r(x) $$ for some $$ r(x)\in F[x] $$ with deg r(x)=1."

Given that the divisor (x - a) is of degree 1 does not this mean that the remainder is of degree less than 1, that is deg r(x) = 0?
Can you please clarify these two points?

Peter
 
Peter said:
Hi caffeinemachine,

I was just revising and reflecting on your post and have a couple of points needing clarification.

You write:

"So say $$ x-b\in F[x] $$ is the minimal polynomial of a over F."

Do you mean:

"So say $$ x-a \in F[x] $$ is the minimal polynomial of a over F."?
Further, later in the post you write:

"Note that $$ f(x)=(x-a)g(x)+r(x) $$ for some $$ r(x)\in F[x] $$ with deg r(x)=1."

Given that the divisor (x - a) is of degree 1 does not this mean that the remainder is of degree less than 1, that is deg r(x) = 0?
Can you please clarify these two points?

Peter
Thank you Peter. I see that my solution is messed up. I can't believe I made those mistakes.

Here.

We know that the minimal polynomial of $a$ over $F$ has degree $1$. So say $x-b\in F[x]$ is the minimal polynomial of $a$ over $F$.

(Note: Here I don't mean that $x-a\in F[x]$ is the minimal polynomial of $a$ over $F$. We cannot say this because we don't know yet that $a\in F$. Saying $x-a\in F[x]$ would automatically imply that $a\in F$, but that is what we have to prove!)

Now, since $x-b\in F[x]$ is the minimal polynomial of $a$ over $F$, we know that $a$ satisfies $x-b$. Thus $a-b=0$. thus giving $a=b$. Since $b\in F$ (Why? Simply because $x-b\in F[x]$), we have $a\in F$.

Forget about my previous solution. It is an embarrassment.

Tell me if you have any further doubts.
 
caffeinemachine said:
Thank you Peter. I see that my solution is messed up. I can't believe I made those mistakes.

Here.

We know that the minimal polynomial of $a$ over $F$ has degree $1$. So say $x-b\in F[x]$ is the minimal polynomial of $a$ over $F$.

(Note: Here I don't mean that $x-a\in F[x]$ is the minimal polynomial of $a$ over $F$. We cannot say this because we don't know yet that $a\in F$. Saying $x-a\in F[x]$ would automatically imply that $a\in F$, but that is what we have to prove!)

Now, since $x-b\in F[x]$ is the minimal polynomial of $a$ over $F$, we know that $a$ satisfies $x-b$. Thus $a-b=0$. thus giving $a=b$. Since $b\in F$ (Why? Simply because $x-b\in F[x]$), we have $a\in F$.

Forget about my previous solution. It is an embarrassment.

Tell me if you have any further doubts.

Thanks caffeinemachine! as always, I appreciate your help

Peter
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
Back
Top