MHB Field Theory - Nicholson - Splitting Fields - Section 6.3 - Example 1

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Nicholson: Introduction to Abstract Algebra, Section 6.3 Splitting Fields.

Example 1 reads as follows: (see attachment)

--------------------------------------------------------------------------------------------------

Example 1. Find an extension E \supseteq \mathbb{Z}_2 in which f(x) = x^3 + x + 1 factors completely into linear factors.

--------------------------------------------------------------------------------------------------

The solution reads as follows:

-------------------------------------------------------------------------------------------------

Solution. The polynomial f(x) is irreducible over \mathbb{Z}_2 (it has no root in \mathbb{Z}_2 ) so

E = \{ a_0 + a_1 t + a_2 t^2 \ | \ a_i \in \mathbb{Z}_2 , f(t) = 0 \}

is a field containing a root t of f(x).

Hence x + t = x - t is a factor of f(x)

The division algorithm gives f(x) = (x+t) g(x) where g(x) = x^2 + tx + (1 + t^2)

, so it suffices to show that g(x) also factors completely in E.

Trial and error give g(t^2) = 0 so g(x) = (x + t^2)(x + v) for some v \in F.

... ... etc (see attachment)

-------------------------------------------------------------------------------------------------------------

My problem is that I cannot show how g(t^2) = 0 implies that g(x) = (x + t^2)(x + v) for some v \in F.

I would appreciate some help.

Peter

[Note; This has also been posted on MHF]
 
Physics news on Phys.org
There are a couple of ways to go about this:

One way is simply to divide $g(x)$ by $x + t^2$:

$g(x) = x^2 + tx + (1+t^2) = (x + t^2)(x + (t+t^2)) + (1 + t^2 + t^3 + t^4)$

$= (x + t^2)(x + (t+t^2)) + (1 + t^3) + t^2 + t(t^3)$

$= (x + t^2)(x + (t+t^2)) + t + t^2 + t(t + 1)$

(since $t^3 + t + 1 = 0$ means $t^3 = -t - 1 = t + 1$, and similarly $t^3 + 1 = -t = t$)

$= (x + t^2)(x + (t+t^2)) + t + t^2 + t + t^2 = (x + t^2)(x + (t+t^2))$

which immediately gives $v = t + t^2$.

There seems to be a typo in the book, it should read: "for some $v \in E$".

A more abstract approach is this:

We have that $g(x)$ has a root in $\Bbb Z_2(t)$, namely $t^2$, so it follows by the division algorithm that $g(x) = (x + t^2)(x + c_0)$ for some $c_0 \in \Bbb Z_2(t)$ (this is because:

$a \in F$ is a root of $f(x) \in F[x] \iff (x - a)|f(x)$ for any field $F$. The other factor must be linear because the degree of $g$ is 2, and the factor $x + t^2$ is linear).

By the uniqueness of this factorization, we can take $v = c_0$.

Multiplying this out, we obtain:

$x^2 + tx + (1 + t^2) = g(x) = x^2 + (t^2 + v)x + t^2v$ yielding:

$t = t^2 + v$
$v = t - t^2 = t + t^2$.

*******

It might be helpful to keep in mind this basic fact:

for any polynomial $p(x) \in F[x]$ for any field $F$, and any $a \in F$ we have:

$p(x) + q(x)(x - a) + r(x)$ with deg(r) < deg($x-a$) = 1, or $r(x) = 0$, that is:

$r$ is a CONSTANT polynomial. Which one? Clearly, $p(a)$, that is:

$p(x) = (x - a)q(x) + p(a)$.
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 26 ·
Replies
26
Views
680
  • · Replies 0 ·
Replies
0
Views
689
  • · Replies 19 ·
Replies
19
Views
3K
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
730